Modeling IoT Enabled Classification System for Road Surface Monitoring

Author(s):  
Tarun Kumar ◽  
Debopam Acharya ◽  
Divya Lohani
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 561
Author(s):  
Taehee Lee ◽  
Chanjun Chun ◽  
Seung-Ki Ryu

Road surfaces should be maintained in excellent condition to ensure the safety of motorists. To this end, there exist various road-surface monitoring systems, each of which is known to have specific advantages and disadvantages. In this study, a smartphone-based dual-acquisition method system capable of acquiring images of road-surface anomalies and measuring the acceleration of the vehicle upon their detection was developed to explore the complementarity benefits of the two different methods. A road test was conducted in which 1896 road-surface images and corresponding three-axis acceleration data were acquired. All images were classified based on the presence and type of anomalies, and histograms of the maximum variations in the acceleration in the gravitational direction were comparatively analyzed. When the types of anomalies were not considered, it was difficult to identify their effects using the histograms. The differences among histograms became evident upon consideration of whether the vehicle wheels passed over the anomalies, and when excluding longitudinal anomalies that caused minor changes in acceleration. Although the image-based monitoring system used in this research provided poor performance on its own, the severity of road-surface anomalies was accurately inferred using the specific range of the maximum variation of acceleration in the gravitational direction.


2020 ◽  
Vol 10 (13) ◽  
pp. 4490 ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Haidang Phan ◽  
Jaesun Lee

Road surface monitoring is an essential problem in providing smooth road infrastructure to commuters. This paper proposed an efficient road surface monitoring using an ultrasonic sensor and image processing technique. A novel cost-effective system, which includes ultrasonic sensors sensing with GPS for the detection of the road surface conditions, was designed and proposed. Dynamic time warping (DTW) technique was incorporated with ultrasonic sensors to improve the classification and accuracy of road surface detecting conditions. A new algorithm, HANUMAN, was proposed for automatic recognition and calculation of pothole and speed bumps. Manual inspection was performed and comparison was undertaken to validate the results. The proposed system showed better efficiency than the previous systems with a 95.50% detection rate for various road surface irregularities. The novel framework will not only identify the road irregularities, but also help in decreasing the number of accidents by alerting drivers.


2014 ◽  
Vol 9 ◽  
pp. 235-240 ◽  
Author(s):  
Karwan Ghazi Fendi ◽  
Sarhat Mustafa Adam ◽  
Nick Kokkas ◽  
Martin Smith

2017 ◽  
Vol 40 ◽  
pp. 71-88 ◽  
Author(s):  
Gurdit Singh ◽  
Divya Bansal ◽  
Sanjeev Sofat ◽  
Naveen Aggarwal

2021 ◽  
Author(s):  
Shahram Sattar ◽  
Songnian Li ◽  
Michael A. Chapman

Road surface monitoring is a key factor to providing smooth and safe road infrastructure to road users. The key to road surface condition monitoring is to detect road surface anomalies, such as potholes, cracks, and bumps, which affect driving comfort and on-road safety. Road surface anomaly detection is a widely studied problem. Recently, smartphone-based sensing has become increasingly popular with the increased amount of available embedded smartphone sensors. Using smartphones to detect road surface anomalies could change the way government agencies monitor and plan for road maintenance. However, current smartphone sensors operate at a low frequency, and undersampled sensor signals cause low detection accuracy. In this study, current approaches for using smartphones for road surface anomaly detection are reviewed and compared. In addition, further opportunities for research using smartphones in road surface anomaly detection are highlighted.


2021 ◽  
Author(s):  
Shahram Sattar

Road surface monitoring is a key factor in providing safe road infrastructure for road users. As a result, road surface condition monitoring aims to detect road surface anomalies such potholes, cracks and bumps, which affect driving comfort and on-road safety. Road surface anomaly detection is a widely studied problem. Recently, smartphone-based sensing has become popular with the increased amount of available embedded smartphone sensors. Using smartphones to detect road surface anomalies could change the way government agencies monitor and plan for road rehabilitation and maintenance. Several studies have been developed to utilize smartphone sensors (e.g., Global Positioning system (GPS) and accelerometers) mounted on a moving vehicle to collect and process the data to monitor and tag roadway surface defects. Geotagged images or videos from the roadways have also been used to detect the road surface anomalies. However, existing studies are limited to identifying roadway anomalies mainly from a single source or lack the utility of combined and integrated multi-sensors in terms of accuracy and functionality. Therefore, low-cost, more efficient pavement evaluation technologies and a centralized information system are necessary to provide the most up-to-date information about the road status due to the dynamic changes on the road surface This information will assist transportation authorities to monitor and enhance the road surface condition. In this research, a probabilistic-based crowdsourcing technique is developed to detect road surface anomalies from smartphone sensors such as linear accelerometers, gyroscopes and GPS to integrate multiple detections accurately. All case studies from the proposed detection approach showed an approximate 80% detection accuracy (from a single survey) which supports the inclusiveness of the detection approach. In addition, the results of the proposed probabilistic-based integration approach indicated that the detection accuracy can be further improved by 5 to 20% with multiple detections conducted by the same vehicle along the same road segments. Finally, the development of the web-based Geographic Information System (GIS) platform would facilitate the real-time and active monitoring of road surface anomalies and offer further improvement of road surface quality control in large cities like Toronto.


Sign in / Sign up

Export Citation Format

Share Document