Design of Circularly Polarized IRNSS Receiver Antenna using Characteristic Mode Analysis

Author(s):  
Nitin Kumar Suyan ◽  
Fateh Lal Lohar ◽  
Chandresh Dhote ◽  
Yogesh Solunke
2019 ◽  
Vol 18 (7) ◽  
pp. 1327-1331 ◽  
Author(s):  
Yi Yan ◽  
Jun Ouyang ◽  
Xiao Ma ◽  
Rui Wang ◽  
Abubakar Sharif

2019 ◽  
Vol 12 (2) ◽  
pp. 131-137
Author(s):  
Puneeth Kumar Rajanna ◽  
Karthik Rudramuni ◽  
Krishnamoorthy Kandasamy

AbstractThis paper presents a novel design of a low profile circularly polarized (CP) metasurface (MTS) antenna with in-band radar cross-section (RCS) reduction property. The MTS is loaded as a superstrate on slot antenna and it can be viewed as a polarization-dependent MTS (PDMTS). The rectangular patch-based PDMTS is analyzed using characteristic mode analysis to find two orthogonal degenerate modes, which produces CP waves. Linearly polarized slot antenna is used to excite the PDMTS. The performance of PDMTS loaded slot antenna is analyzed numerically using full-wave analysis method. The PDMTS CP antenna is fabricated and its performance is tested experimentally. The proposed antenna has a compact structure and it has an overall size of $0.52{\lambda _0}\times 0.52{\lambda _0} \times 0.078{\lambda _0}$ (where ${\lambda _0}$ is the free space wavelength). The measured results show that the PDMTS antenna achieves $-10\,{\rm dB}$ impedance bandwidth of 29.41$\%$, 3-dB axial ratio bandwidth of 9.05$\%$, broadside gain of 6.34 dB, and monostatic RCS reduction of $-30.2\,{\rm dBsm}$ at the resonant frequency of 5.86 GHz. The simulated results are in well agreement with the measured results and it is well suited for C-band Radar and Satellite communication.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Arnon Sakonkanapong ◽  
Chuwong Phongcharoenpanich

This research proposes an integrated high-frequency (HF) and ultrahigh-frequency (UHF) passive radio frequency identification (RFID) tag antenna for near-field (13.56 MHz) and far-field (920–925 MHz) communication. This tag antenna is advantageous for the applications with lossy material in the near-field communication and mitigates polarization loss in the far-field communications. The HF-RFID tag antenna is of square spiral structure, and the circularly polarized UHF-RFID structure consists of a square loop radiator with cascading loop feeding and shorted stub. The structure of HF-RFID tag antenna situated inside the circularly polarized UHF-RFID tag can avoid the significant effect of the near-field magnetic coupling from the square loop. The UHF-RFID tag antenna is realized by using characteristic mode analysis for wideband circular polarization. The HF-RFID structure is conjugate-matched with NXP NT3H2111 chip, and the UHF-RFID structure is conjugate-matched with NXP G2X chip. Simulations were carried out, and an antenna prototype was fabricated. The experimental results reveal that the radiation pattern of UHF-RFID tag antenna is bidirectional with a gain of 0.31 dBic. The impedance bandwidth covers the frequency range of 903–944 MHz, and the axial ratio in boresight direction at 922.5 MHz is 1.67 dB, with the axial ratio bandwidth over 863–938 MHz. The maximum near-field and far-field reading ranges are 4.9 cm and 8.7 m. The proposed integrated dual-band passive tag antenna is operationally ideal for HF-RFID and UHF-RFID applications.


Sign in / Sign up

Export Citation Format

Share Document