On the Robustness of Deep Learning Models to Universal Adversarial Attack

Author(s):  
Rezaul Karim ◽  
Md Amirul Islam ◽  
Noman Mohammed ◽  
Neil D. B. Bruce
2021 ◽  
pp. 129-159
Author(s):  
Mahbuba Tasmin ◽  
Sharif Uddin Ruman ◽  
Taoseef Ishtiak ◽  
Arif-ur-Rahman Chowdhury Suhan ◽  
Redwan Hasif ◽  
...  

2021 ◽  
Author(s):  
Xinghao Yang ◽  
Yongshun Gong ◽  
Weifeng Liu ◽  
JAMES BAILEY ◽  
Tianqing Zhu ◽  
...  

Deep learning models are known immensely brittle to adversarial image examples, yet their vulnerability in text classification is insufficiently explored. Existing text adversarial attack strategies can be roughly divided into three categories, i.e., character-level attack, word-level attack, and sentence-level attack. Despite the success brought by recent text attack methods, how to induce misclassification with the minimal text modifications while keeping the lexical correctness, syntactic soundness, and semantic consistency simultaneously is still a challenge. To examine the vulnerability of deep models, we devise a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) approach which attacks text documents not only at a unigram word level but also at a bigram level to avoid generating meaningless sentences. We also present a hybrid attack strategy that collects substitution words from both synonyms and sememe candidates, to enrich the potential candidate set. Besides, a Semantic Preservation Optimization (SPO) method is devised to determine the word substitution priority and reduce the perturbation cost. Furthermore, we constraint the SPO with a semantic Filter (dubbed SPOF) to improve the semantic similarity between the input text and the adversarial example. To estimate the effectiveness of our proposed methods, BU-SPO and BU-SPOF, we attack four victim deep learning models trained on three real-world text datasets. Experimental results demonstrate that our approaches accomplish the highest semantics consistency and attack success rates by making the minimal word modifications compared with competitive methods.


2021 ◽  
Author(s):  
Xinghao Yang ◽  
Yongshun Gong ◽  
Weifeng Liu ◽  
JAMES BAILEY ◽  
Tianqing Zhu ◽  
...  

Deep learning models are known immensely brittle to adversarial image examples, yet their vulnerability in text classification is insufficiently explored. Existing text adversarial attack strategies can be roughly divided into three categories, i.e., character-level attack, word-level attack, and sentence-level attack. Despite the success brought by recent text attack methods, how to induce misclassification with the minimal text modifications while keeping the lexical correctness, syntactic soundness, and semantic consistency simultaneously is still a challenge. To examine the vulnerability of deep models, we devise a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) approach which attacks text documents not only at a unigram word level but also at a bigram level to avoid generating meaningless sentences. We also present a hybrid attack strategy that collects substitution words from both synonyms and sememe candidates, to enrich the potential candidate set. Besides, a Semantic Preservation Optimization (SPO) method is devised to determine the word substitution priority and reduce the perturbation cost. Furthermore, we constraint the SPO with a semantic Filter (dubbed SPOF) to improve the semantic similarity between the input text and the adversarial example. To estimate the effectiveness of our proposed methods, BU-SPO and BU-SPOF, we attack four victim deep learning models trained on three real-world text datasets. Experimental results demonstrate that our approaches accomplish the highest semantics consistency and attack success rates by making the minimal word modifications compared with competitive methods.


2020 ◽  
Vol 26 (3) ◽  
pp. 360-363 ◽  
Author(s):  
Xintian Han ◽  
Yuxuan Hu ◽  
Luca Foschini ◽  
Larry Chinitz ◽  
Lior Jankelson ◽  
...  

Author(s):  
Chenxiao Zhao ◽  
P. Thomas Fletcher ◽  
Mixue Yu ◽  
Yaxin Peng ◽  
Guixu Zhang ◽  
...  

Many deep learning models are vulnerable to the adversarial attack, i.e., imperceptible but intentionally-designed perturbations to the input can cause incorrect output of the networks. In this paper, using information geometry, we provide a reasonable explanation for the vulnerability of deep learning models. By considering the data space as a non-linear space with the Fisher information metric induced from a neural network, we first propose an adversarial attack algorithm termed one-step spectral attack (OSSA). The method is described by a constrained quadratic form of the Fisher information matrix, where the optimal adversarial perturbation is given by the first eigenvector, and the vulnerability is reflected by the eigenvalues. The larger an eigenvalue is, the more vulnerable the model is to be attacked by the corresponding eigenvector. Taking advantage of the property, we also propose an adversarial detection method with the eigenvalues serving as characteristics. Both our attack and detection algorithms are numerically optimized to work efficiently on large datasets. Our evaluations show superior performance compared with other methods, implying that the Fisher information is a promising approach to investigate the adversarial attacks and defenses.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document