A New Load Balancing Scheduling Algorithm Based on Linux Virtual Server

Author(s):  
Mengna Zhang ◽  
Hongyang Yu
Author(s):  
Shailendra Raghuvanshi ◽  
Priyanka Dubey

Load balancing of non-preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose an algorithm named honey bee behavior inspired load balancing, which aims to achieve well balanced load across virtual machines for maximizing the throughput. The proposed algorithm also balances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal. We have compared the proposed algorithm with existing load balancing and scheduling algorithms. The experimental results show that the algorithm is effective when compared with existing algorithms. Our approach illustrates that there is a significant improvement in average execution time and reduction in waiting time of tasks on queue using workflowsim simulator in JAVA.


Booking figuring is reliably a fervently issue in appropriated processing condition. Remembering the true objective to take out system bottleneck and modify stack logically. A stack changing endeavor booking count in light of weighted self-assertive and input frameworks was proposed in this paperFrom the outset the picked cloud masterminding host picked assets by necessities and made static estimation, and some time later coordinated them; other than the tally picked assets from which composed by weight self-confidently; by then it got standing out powerful data from effect burden to channel and sort the left. Finally it accomplished oneself adaptively to structure stack through information systems. The examination demonstrates that the calculation has stayed away from the framework bottleneck adequately and has accomplished adjusted burden and furthermore self-flexibility to it.keywords: Task Scheduling; Feedback Mechanism; Cloud Computing; Load Balancing


2021 ◽  
Vol 11 (3) ◽  
pp. 34-48
Author(s):  
J. K. Jeevitha ◽  
Athisha G.

To scale back the energy consumption, this paper proposed three algorithms: The first one is identifying the load balancing factors and redistribute the load. The second one is finding out the most suitable server to assigning the task to the server, achieved by most efficient first fit algorithm (MEFFA), and the third algorithm is processing the task in the server in an efficient way by energy efficient virtual round robin (EEVRR) scheduling algorithm with FAT tree topology architecture. This EEVRR algorithm improves the quality of service via sending the task scheduling performance and cutting the delay in cloud data centers. It increases the energy efficiency by achieving the quality of service (QOS).


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahfooz Alam ◽  
Mahak ◽  
Raza Abbas Haidri ◽  
Dileep Kumar Yadav

Purpose Cloud users can access services at anytime from anywhere in the world. On average, Google now processes more than 40,000 searches every second, which is approximately 3.5 billion searches per day. The diverse and vast amounts of data are generated with the development of next-generation information technologies such as cryptocurrency, internet of things and big data. To execute such applications, it is needed to design an efficient scheduling algorithm that considers the quality of service parameters like utilization, makespan and response time. Therefore, this paper aims to propose a novel Efficient Static Task Allocation (ESTA) algorithm, which optimizes average utilization. Design/methodology/approach Cloud computing provides resources such as virtual machine, network, storage, etc. over the internet. Cloud computing follows the pay-per-use billing model. To achieve efficient task allocation, scheduling algorithm problems should be interacted and tackled through efficient task distribution on the resources. The methodology of ESTA algorithm is based on minimum completion time approach. ESTA intelligently maps the batch of independent tasks (cloudlets) on heterogeneous virtual machines and optimizes their utilization in infrastructure as a service cloud computing. Findings To evaluate the performance of ESTA, the simulation study is compared with Min-Min, load balancing strategy with migration cost, Longest job in the fastest resource-shortest job in the fastest resource, sufferage, minimum completion time (MCT), minimum execution time and opportunistic load balancing on account of makespan, utilization and response time. Originality/value The simulation result reveals that the ESTA algorithm consistently superior performs under varying of batch independent of cloudlets and the number of virtual machines’ test conditions.


Sign in / Sign up

Export Citation Format

Share Document