optimal machine
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 37)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
A. Kostic ◽  
J. Jasche ◽  
D. Kodi Ramanah ◽  
G. Lavaux

2022 ◽  
Author(s):  
Omar Alfarisi ◽  
Zeyar Aung ◽  
Mohamed Sassi

For defining the optimal machine learning algorithm, the decision was not easy for which we shall choose. To help future researchers, we describe in this paper the optimal among the best of the algorithms. We built a synthetic data set and performed the supervised machine learning runs for five different algorithms. For heterogeneous rock fabric, we identified Random Forest, among others, to be the appropriate algorithm.


Author(s):  
E. R. Muzafarov

The paper is devoted to the problem of optimal machine design selection by developing and solving the problem of multi-criteria optimisation, using the method suggesting a unified criterion with the use of weighting factors based on expert estimates. Based on the example of the design of a multi-purpose machine for service electric transport, a mathematical model of parametric optimisation of the design of electric and combined propulsion plants is developed. The most efficient system components are selected to meet the customer's requirements.


2021 ◽  
Author(s):  
Omar Alfarisi ◽  
Zeyar Aung ◽  
Mohamed Sassi

For defining the optimal machine learning algorithm, the decision was not easy for which we shall choose. To help future researchers, we describe in this paper the optimal among the best of the algorithms. We built a synthetic data set and performed the supervised machine learning runs for five different algorithms. For heterogeneity, we identified Random Forest, among others, to be the best algorithm.


2021 ◽  
Author(s):  
Omar Alfarisi ◽  
Zeyar Aung ◽  
Mohamed Sassi

For defining the optimal machine learning algorithm, the decision was not easy for which we shall choose. To help future researchers, we describe in this paper the optimal among the best of the algorithms. We built a synthetic data set and performed the supervised machine learning runs for five different algorithms. For heterogeneity, we identified Random Forest, among others, to be the best algorithm.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 329
Author(s):  
Mohamed Y. Metwly ◽  
Ahmed Hemeida ◽  
Ayman S. Abdel-Khalik ◽  
Mostafa S. Hamad ◽  
Shehab Ahmed

Permanent magnet machines (PMs) equipped with fractional slot concentrated windings (FSCWs) have been preferably proposed for electric vehicle (EV) applications. Moreover, integrated on-board battery chargers (OBCs), which employ the powertrain elements in the charging process, promote the zero-emission future envisaged for transportation through the transition to EVs. Based on the available literature, the employed machine, as well as the adopted winding configuration, highly affects the performance of the integrated OBC. However, the optimal design of the FSCW-based PM machine in the charging mode of operation has not been conceived thus far. In this paper, the design and multi-objective optimization of an asymmetrical 12-slot/10-pole integrated OBC based on the efficient magnetic equivalent circuit (MEC) approach are presented, shedding light on machine performance during charging mode. An ‘initial’ surface-mounted PM (SPM) machine is first designed based on the magnetic equivalent circuit (MEC) model. Afterwards, a multi-objective genetic algorithm is utilized to define the optimal machine parameters. Finally, the optimal machine is compared to the ‘initial’ design using finite element (FE) simulations in order to validate the proposed optimization approach and to highlight the performance superiority of the optimal machine over its initial counterpart.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiao Zheng ◽  
Syed Bilal Hussain Shah ◽  
Xiaojun Ren ◽  
Fengqi Li ◽  
Liqaa Nawaf ◽  
...  

The rapid growth of the Internet of Medical Things (IoMT) has led to the ubiquitous home health diagnostic network. Excessive demand from patients leads to high cost, low latency, and communication overload. However, in the process of parameter updating, the communication cost of the system or network becomes very large due to iteration and many participants. Although edge computing can reduce latency to some extent, there are significant challenges in further reducing system latency. Federated learning is an emerging paradigm that has recently attracted great interest in academia and industry. The basic idea is to train a globally optimal machine learning model among all participating collaborators. In this paper, a gradient reduction algorithm based on federated random variance is proposed to reduce the number of iterations between the participant and the server from the perspective of the system while ensuring the accuracy, and the corresponding convergence analysis is given. Finally, the method is verified by linear regression and logistic regression. Experimental results show that the proposed method can significantly reduce the communication cost compared with the general stochastic gradient descent federated learning.


Author(s):  
Ziwei Zhang ◽  
Xin Wang ◽  
Wenwu Zhu

Machine learning on graphs has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To solve this critical challenge, automated machine learning (AutoML) on graphs which combines the strength of graph machine learning and AutoML together, is gaining attention from the research community. Therefore, we comprehensively survey AutoML on graphs in this paper, primarily focusing on hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We further overview libraries related to automated graph machine learning and in-depth discuss AutoGL, the first dedicated open-source library for AutoML on graphs. In the end, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive review of automated machine learning on graphs to the best of our knowledge.


Sign in / Sign up

Export Citation Format

Share Document