Comparison between asymptotic Bayesian approach and Kalman filter-based technique for 3D reconstruction using an image sequence

Author(s):  
C.J. Tsai ◽  
Y.P. Hung ◽  
S.C. Hsu
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Alireza Behrad ◽  
Nadia Roodsarabi

One of the most important issues in human motion analysis is the tracking and 3D reconstruction of human motion, which utilizes the anatomic points' positions. These points can uniquely define the position and orientation of all anatomical segments. In this work, a new method is proposed for tracking and 3D reconstruction of human motion from the image sequence of a monocular static camera. In this method, 2D tracking is used for 3D reconstruction, which a database of selected frames is used for the correction of tracking process. The method utilizes a new image descriptor based on discrete cosine transform (DCT), which is employed in different stages of the algorithm. The advantage of using this descriptor is the capabilities of selecting proper frequency regions in various tasks, which results in an efficient tracking and pose matching algorithms. The tracking and matching algorithms are based on reference descriptor matrixes (RDMs), which are updated after each stage based on the frequency regions in DCT blocks. Finally, 3D reconstruction is performed using Taylor’s method. Experimental results show the promise of the algorithm.


2020 ◽  
Vol 1550 ◽  
pp. 032051
Author(s):  
Yun-peng Liu ◽  
Xing-peng Yan ◽  
Ning Wang ◽  
Xin Zhang ◽  
Zhe Li

2019 ◽  
Vol 59 (4) ◽  
pp. 390-404
Author(s):  
H. Danandeh Hesar ◽  
S. Bigdeli ◽  
M. Ebrahimi Moghaddam

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2333 ◽  
Author(s):  
Simone Mentasti ◽  
Federico Pedersini

In this paper we present a simple stand-alone system performing the autonomous acquisition of multiple pictures all around large objects, i.e., objects that are too big to be photographed from any side just with a camera held by hand. In this approach, a camera carried by a drone (an off-the-shelf quadcopter) is employed to carry out the acquisition of an image sequence representing a valid dataset for the 3D reconstruction of the captured scene. Both the drone flight and the choice of the viewpoints for shooting a picture are automatically controlled by the developed application, which runs on a tablet wirelessly connected to the drone, and controls the entire process in real time. The system and the acquisition workflow have been conceived with the aim to keep the user intervention minimal and as simple as possible, requiring no particular skill to the user. The system has been experimentally tested on several subjects of different shapes and sizes, showing the ability to follow the requested trajectory with good robustness against any flight perturbations. The collected images are provided to a scene reconstruction software, which generates a 3D model of the acquired subject. The quality of the obtained reconstructions, in terms of accuracy and richness of details, have proved the reliability and efficacy of the proposed system.


2014 ◽  
Vol 602-605 ◽  
pp. 2061-2064 ◽  
Author(s):  
Chao Bing Liu ◽  
Cong Cong Chen ◽  
Xiao Li

Camshift, namely "Continuously Adaptive Mean-Shift" algorithm, is an adaptive tracking algorithm. This algorithm is based on the color information to track the moving target in image sequence. In the simple background, this algorithm achieved a steady and current tracking effect. But in dynamic scene, the global motion caused by the camera, the background of the light and occlusion will affect the accuracy, or even lose the tracking of the target. In order to solve the above problem, this paper adjust the H component in HSV color space, as well use weighted color histogram to improve the Camshift algorithm, then combined with Kalman filter to track the target in the image sequence. The experimental result shows that this approach can track object stability and correctly in dynamic scene.


Author(s):  
Abhijit Boruah ◽  
Kamal Baruah ◽  
Biman Das ◽  
Manash Jyoti Das ◽  
Niranjan Borpatra Gohain

2019 ◽  
Vol 26 (2) ◽  
pp. 109-122 ◽  
Author(s):  
Andrey A. Popov ◽  
Adrian Sandu

Abstract. Ever since its inception, the ensemble Kalman filter (EnKF) has elicited many heuristic approaches that sought to improve it. One such method is covariance localization, which alleviates spurious correlations due to finite ensemble sizes by using relevant spatial correlation information. Adaptive localization techniques account for how correlations change in time and space, in order to obtain improved covariance estimates. This work develops a Bayesian approach to adaptive Schur-product localization for the deterministic ensemble Kalman filter (DEnKF) and extends it to support multiple radii of influence. We test the proposed adaptive localization using the toy Lorenz'96 problem and a more realistic 1.5-layer quasi-geostrophic model. Results with the toy problem show that the multivariate approach informs us that strongly observed variables can tolerate larger localization radii. The univariate approach leads to markedly improved filter performance for the realistic geophysical model, with a reduction in error by as much as 33 %.


2021 ◽  
Vol 7 (3) ◽  
pp. 35-42
Author(s):  
Faisal Lutfi Afriansyah ◽  
Niyalatul Muna

Image processing in the image sequence for pattern recognition can be a solution for detecting limb movements in infants after surgery, but the camera is not calibrated. So we need the right method solution to be able to detect these conditions. This happens to cameras that are generally not calibrated and do not have the feature to calculate the vector depth for 3D reconstruction. Because to detect and find limb movement depth is needed to be able to do 3D reconstruction, because it is not only based on the x and y parameters but also z so that with the additional parameters it makes it easier to analyze the motion of the motion axis and the motion vector. This paper discusses a method for detecting 2D motion into a 3D-based motion vector by sequencing the image sequence image then finding the point of transfer of the motion frame destination from the frame reference frame by obtaining the depth (depth vector) using the fundamental matrix from the generated motion vector. This method is recommended because it can perform 3D reconstruction from input in the form of 2D image sequences by calculating the intrinsic parameters so that 3D reconstruction can be carried out. So that the limb vector movement in infants that was originally 2D can be reconstructed into 3D based and makes it easier to carry out the analysis because of the additional parameters.


Sign in / Sign up

Export Citation Format

Share Document