proper frequency
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 13
Author(s):  
Yixuan Sun ◽  
Stephen Beeby

This paper presents the COMSOL simulations of magnetically coupled resonant wireless power transfer (WPT), using simplified coil models for embroidered planar two-coil and four-coil systems. The power transmission of both systems is studied and compared by varying the separation, rotation angle and misalignment distance at resonance (5 MHz). The frequency splitting occurs at short separations from both the two-coil and four-coil systems, resulting in lower power transmission. Therefore, the systems are driven from 4 MHz to 6 MHz to analyze the impact of frequency splitting at close separations. The results show that both systems had a peak efficiency over 90% after tuning to the proper frequency to overcome the frequency splitting phenomenon at close separations below 10 cm. The four-coil design achieved higher power efficiency at separations over 10 cm. The power efficiency of both systems decreased linearly when the axial misalignment was over 4 cm or the misalignment angle between receiver and transmitter was over 45 degrees.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 408 ◽  
Author(s):  
Shengbin Luo Wang ◽  
Zhen-hai Xu ◽  
Xinghua Liu ◽  
Wei Dong ◽  
Guoyu Wang

The frequency diverse array (FDA) has drawn substantial attention because it provides a new degree of freedom. However, the multitarget localization is fundamentally limited by the range-angle-coupled and range-periodic beampattern of the basic FDA. It has been suggested to design a special FDA configuration to localize targets, but seldom of the existing works consider the design both in transmitting and receiving. In this paper, a transmit–receive system of FDA radar is proposed for the multitarget localization. In order to decouple the beampattern in the range and angle domains, the configurations of subarray-based FDA (SB-FDA) and full-band FDA (FB-FDA) are chosen as transmitter and receiver, respectively. In such a system framework, the receive beamwidth in range domain is only a quarter of the transmission. Then, two typical multitarget scenarios, sparse targets and unresolved targets, are both considered in the multitarget localization. For sparse targets, a proper frequency increment is selected to control the range-periodic transmit and receive mainlobes to focus on a single target, besides being staggered with others. In this way, multitarget localization is achieved in different pulses with monopulse processing. For unresolved targets, a method of intra-pulse beam scanning is proposed to localize each target with little interference from others. We also analyze the system performance in Cramér-Rao lower bound (CRLB) of localization and output signal to interference-plus-noise ratio (SINR). Several simulation results demonstrate the effectiveness of the proposed transmit–receive system in multitarget localization.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 167 ◽  
Author(s):  
Serhii Mykhalkiv ◽  
Vasyl Ravlyuk ◽  
Andrii Khodakivskyi ◽  
Viktor Bereznyi

Purpose: To improve the performance of vibration spectral methods in identification of bearing element faults of freight car axle-boxes.Approach: An algorithm for simulating the expected vibration signal of outer race bearing was implemented. The autoregressive filter and minimum empirical deconvolution method was applied to identify the ball pass outer-race fault frequency and its harmonics on the envelope spectra and squared envelope spectra which were extracted in the proper frequency band.Results: The simulated vibration signal of a faulty bearing shows suitability of the autoregressive filter and minimum empirical deconvolution method, envelope and squared envelope spectra for outer race fault identification. There were observed a lower amount of features and their impulse sharpness in outer race faults in the bearing test rig than on the spectra in the wheelset test rig.Conclusions: The deterministic components are removed in the residual signal after using the AR filter and the impulse and noise components that decrease the kurtosis value remain in it. The MED technique additionally enhances the magnitude of increased BPFO components after using the AR filter and, together with it, provides satisfied performance and increases the efficiency of vibration diagnostics. 


2012 ◽  
Vol 189 ◽  
pp. 486-490
Author(s):  
Guang Hui Zhang

In the paper,intrinsic mode of parts clutch were analysised to get their proper frequency. Some parts of the cluch were made the whole flow of the topological optimization, and were carried on to re-design on this foundation providing the reference for the later design.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Alireza Behrad ◽  
Nadia Roodsarabi

One of the most important issues in human motion analysis is the tracking and 3D reconstruction of human motion, which utilizes the anatomic points' positions. These points can uniquely define the position and orientation of all anatomical segments. In this work, a new method is proposed for tracking and 3D reconstruction of human motion from the image sequence of a monocular static camera. In this method, 2D tracking is used for 3D reconstruction, which a database of selected frames is used for the correction of tracking process. The method utilizes a new image descriptor based on discrete cosine transform (DCT), which is employed in different stages of the algorithm. The advantage of using this descriptor is the capabilities of selecting proper frequency regions in various tasks, which results in an efficient tracking and pose matching algorithms. The tracking and matching algorithms are based on reference descriptor matrixes (RDMs), which are updated after each stage based on the frequency regions in DCT blocks. Finally, 3D reconstruction is performed using Taylor’s method. Experimental results show the promise of the algorithm.


Author(s):  
Cédric Lopez ◽  
François Malburet ◽  
André Barraco

This paper studies problematic of a mechanical system composed of different coupled parts submitted to a high speed shock and proposes analysis of anti vibratory passive and active methods based on an experimental and theoretical coupled approach. After a shock, different parts of the system oscillate. If one of them is excited at a particular frequency, such as its proper frequency, important oscillations appear and can lead to the deterioration of the system by introducing important stresses. In this paper, we propose an analysis in order to understand this kind of problem and what we can do to avoid it. Firstly, we discuss problematic and we expose the studied system. In a second time, we develop two approaches of modeling that allow us to understand the phenomenon by carrying out numerical simulations. Then cross checking of model is completed via experimental study on drop test bench. Passive minimization method of vibrations based on experimental and theoretical coupled approach is exposed. Finally, a comparative analysis of different methods of control and experimental results of controlled system are presented.


Sign in / Sign up

Export Citation Format

Share Document