Robust color object detection using spatial-color joint probability functions

Author(s):  
D. Crandall ◽  
Jiebo Luo
1989 ◽  
Vol 28 (03) ◽  
pp. 160-167 ◽  
Author(s):  
P. Penczek ◽  
W. Grochulski

Abstract:A multi-level scheme of syntactic reduction of the epileptiform EEG data is briefly discussed and the possibilities it opens up in describing the dynamic behaviour of a multi-channel system are indicated. A new algorithm for the inference of a Markov network from finite sets of sample symbol strings is introduced. Formulae for the time-dependent state occupation probabilities, as well as joint probability functions for pairs of channels, are given. An exemplary case of analysis in these terms, taken from an investigation of anticonvulsant drug effects on EEG seizure patterns, is presented.


Author(s):  
P. Tirupathi Rao ◽  
B.N. Naveen Kumar ◽  
J. Jayabharathiraj

This study has proposed a Stochastic Model for cancer growth under chemotherapy with the assumptions of the growth, transition and loss parameters of different stages are inter and intra dependent. A trivariate Poisson process approach has been adopted for modeling the three stage cancer growth by considering the stages of cells in the tumor namely normal cell, mutant cell and malignant cell in the presence and absence of chemotherapy during time 't'. Stochastic differential equations were obtained and the three dimensional joint probability functions along with related statistical measures were derived. Model behavior was analysed through numerical data.


Author(s):  
ALBERTO SANFELIU ◽  
FRANCESC SERRATOSA ◽  
RENÉ ALQUÉZAR

The aim of this article is to present a random graph representation, that is based on second-order relations between graph elements, for modeling sets of attributed graphs (AGs). We refer to these models as Second-Order Random Graphs (SORGs). The basic feature of SORGs is that they include both marginal probability functions of graph elements and second-order joint probability functions. This allows a more precise description of both the structural and semantic information contents in a set of AGs and, consequently, an expected improvement in graph matching and object recognition. The article presents a probabilistic formulation of SORGs that includes as particular cases the two previously proposed approaches based on random graphs, namely the First-Order Random Graphs (FORGs) and the Function-Described Graphs (FDGs). We then propose a distance measure derived from the probability of instantiating a SORG into an AG and an incremental procedure to synthesize SORGs from sequences of AGs. Finally, SORGs are shown to improve the performance of FORGs, FDGs and direct AG-to-AG matching in three experimental recognition tasks: one in which AGs are randomly generated and the other two in which AGs represent multiple views of 3D objects (either synthetic or real) that have been extracted from color images. In the last case, object learning is achieved through the synthesis of SORG models.


Author(s):  
Кonstantin А. Elshin ◽  
Еlena I. Molchanova ◽  
Мarina V. Usoltseva ◽  
Yelena V. Likhoshway

Using the TensorFlow Object Detection API, an approach to identifying and registering Baikal diatom species Synedra acus subsp. radians has been tested. As a result, a set of images was formed and training was conducted. It is shown that аfter 15000 training iterations, the total value of the loss function was obtained equal to 0,04. At the same time, the classification accuracy is equal to 95%, and the accuracy of construction of the bounding box is also equal to 95%.


2010 ◽  
Vol 130 (9) ◽  
pp. 1572-1580
Author(s):  
Dipankar Das ◽  
Yoshinori Kobayashi ◽  
Yoshinori Kuno

Sign in / Sign up

Export Citation Format

Share Document