malignant cell
Recently Published Documents


TOTAL DOCUMENTS

800
(FIVE YEARS 208)

H-INDEX

56
(FIVE YEARS 10)

Author(s):  
Sajad Najafi ◽  
Soudeh Ghafouri-Fard ◽  
Bashdar Mahmud Hussen ◽  
Hazha Hadayat Jamal ◽  
Mohammad Taheri ◽  
...  

Long noncoding RNAs (lncRNAs) are a class of noncoding transcripts characterized with more than 200 nucleotides of length. Unlike their names, some short open reading frames are recognized for them encoding small proteins. LncRNAs are found to play regulatory roles in essential cellular processes such as cell growth and apoptosis. Therefore, an increasing number of lncRNAs are identified with dysregulation in a wide variety of human cancers. SNHG7 is an lncRNA with upregulation in cancer cells and tissues. It is frequently reported with potency of promoting malignant cell behaviors in vitro and in vivo. Like oncogenic/tumor suppressor lncRNAs, SNHG7 is found to exert its tumorigenic functions through interaction with other biological substances. These include sponging target miRNAs (various numbers are identified), regulation of several signaling pathways, transcription factors, and effector proteins. Importantly, clinical studies demonstrate association between high SNHG7 expression and clinicopathological features in cancerous patients, worse prognosis, and enhanced chemoresistance. In this review, we summarize recent studies in three eras of cell, animal, and human experiments to bold the prognostic, diagnostic, and therapeutic potentials.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 107
Author(s):  
Narmatha Gurumoorthy ◽  
Fazlina Nordin ◽  
Gee Jun Tye ◽  
Wan Safwani Wan Kamarul Zaman ◽  
Min Hwei Ng

Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.


2021 ◽  
Vol 23 (1) ◽  
pp. 464
Author(s):  
Hajar Alammar ◽  
Rayan Nassani ◽  
Mana M. Alshehri ◽  
Alaa A. Aljohani ◽  
Bahauddeen M. Alrfaei

Medulloblastoma is a common fatal pediatric brain tumor. More treatment options are required to prolong survival and decrease disability. mTOR proteins play an essential role in the disease pathogenesis, and are an essential target for therapy. Three generations of mTOR inhibitors have been developed and are clinically used for immunosuppression and chemotherapy for multiple cancers. Only a few mTOR inhibitors have been investigated for the treatment of medulloblastoma and other pediatric tumors. The first-generation mTOR, sirolimus, temsirolimus, and everolimus, went through phase I clinical trials. The second-generation mTOR, AZD8055 and sapanisertib, suppressed medulloblastoma cell growth; however, limited studies have investigated possible resistance pathways. No clinical trials have been found to treat medulloblastoma using third-generation mTOR inhibitors. This systematic review highlights the mechanisms of resistance of mTOR inhibitors in medulloblastoma and includes IDO1, T cells, Mnk2, and eIF4E, as they prolong malignant cell survival. The findings promote the importance of combination therapy in medulloblastoma due to its highly resistant nature.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Wang ◽  
Zhen-wu Du ◽  
Tian-min Xu ◽  
Xiao-jun Wang ◽  
Wei Li ◽  
...  

Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.


Medicines ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 78
Author(s):  
Praveen K. Roayapalley ◽  
Hiroshi Sakagami ◽  
Keitaro Satoh ◽  
Shigeru Amano ◽  
Kenjiro Bandow ◽  
...  

A series of 3,5-bis(benzylidene)-4-piperidones 2a-u were prepared as candidate cytotoxic agents. In general, the compounds are highly toxic to human gingival carcinoma (Ca9-22), human squamous carcinoma-2 (HSC-2) and human squamous carcinoma-4 (HSC-4) neoplasms, but less so towards non-malignant human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF) and human pulp cells (HPC), thereby demonstrating tumour-selective toxicity. A further study revealed that most of the compounds in series 2 were more toxic to the human Colo-205 adenocarcinoma cell line (Colo-205), human HT29 colorectal adenocarcinoma cells (HT-29) and human CEM lymphoid cells (CEM) neoplasms than towards non-malignant human foreskin Hs27 fibroblast line (Hs27) cells. The potency of the cytotoxins towards the six malignant cell lines increased as the sigma and sigma star values of the aryl substituents rose. Attempts to condense various aryl aldehydes with 2,2,6,6-tetramethyl-4-piperidone led to the isolation of some 1,5-diaryl-1,4-pentadien-3-ones. The highest specificity for oral cancer cells was displayed by 2e and 2r. In the case of 2r, its selective toxicity exceeded that of doxorubicin and melphalan. The enones 2k, m, o have the highest SI values towards colon cancer and leukemic cells. Both 2e,r inhibited mitosis and increased the subG1 population (with a transient increase in G2/M phase cells). Slight activation of caspase-3, based on the cleavage of poly(ADP-ribose)polymerase (PARP) and procaspase 3, was detected.


Author(s):  
Bufang Xu ◽  
Fengjie Liu ◽  
Yumei Gao ◽  
Jingru Sun ◽  
Yingyi Li ◽  
...  

Cutaneous T cell lymphoma is a generally indolent disease derived from skin-homing mature T cells. However, in advanced stages, CTCL may manifest as aggressive clinical behavior and lead to a poor prognosis. The mechanism of disease progression in CTCL remains unknown. Here, with a large clinical cohort, we identified that IKZF2, an essential transcription factor during T cell development and differentiation, showed stage-dependent overexpression in the malignant T cells in MF lesions. IKZF2 is specifically over-expressed in advanced-stage MF lesions, correlates with poor patient prognosis. Mechanistically, IKZF2 overexpression promotes CTCL progression via inhibiting malignant cell apoptosis and may contribute to tumor immune escape by downregulating MHC-II molecules and up-regulating the production of anti-inflammatory cytokine IL-10 by malignant T cells. These results demonstrate the important role of IKZF2 in high-risk CTCL and pave the way for future targeted therapy.


2021 ◽  
Vol 11 (22) ◽  
pp. 10875
Author(s):  
Lun-Zhang Guo ◽  
Cheng-Ham Wu ◽  
Ming-Fong Tsai ◽  
Fong-Yu Cheng ◽  
Vijayakumar Shanmugam ◽  
...  

Photodynamic therapy (PDT) provides a potential therapeutic approach for killing malignant cell/solid tumors, but currently approved photosensitizers (PSs) are generally excited by visible light, limiting the penetration depth in tissues. It is necessary to develop a near-infrared (NIR) responsive photodynamic platform, providing maximum tissue penetration. Here, we present a gold nanopeanut platform exhibiting dual functions of NIR PDT and two-photon luminescence imaging. The nanopeanut with a size less than 100 nm exhibits two distinct NIR surface plasmon absorption bands at approximately 1110 and 1300 nm. To perform PDT, we conjugated commercial toluidine blue O (TBO) PS on the surface of the nanopeanuts. With spectral overlap, the 1230-nm femtosecond Cr: forsterite laser can excite the surface plasmons of nanopeanuts, transfer energy to TBO, and generate singlet oxygen to kill cells. Moreover, the plasmon resonance-enhanced two-photon luminescence of nanopeanuts can be used to map their delivery in vivo. These results demonstrate that the PS-conjugated gold nanopeanut is an effective theranostic system for NIR PDT.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ke Shi ◽  
Jin Zhong Zhang ◽  
Liang Yang ◽  
Ning-Ning Li ◽  
Ying Yue ◽  
...  

AbstractAurora A kinase is a cell cycle regulator that is dysregulated in several different malignancies. Nevertheless, its regulatory mechanisms are still not fully understood. Here, we report that ubiquitin specific peptidase 3 (USP3) promotes proliferation and metastasis of esophageal squamous cell carcinoma (ESCC) cells by mediating deubiquitination of Aurora A. Analysis of human clinical samples indicated that USP3 and Aurora A are highly expressed in ESCC. Cellular experiments confirmed that high expression of USP3 and Aurora A in ESCC cells promoted malignant cell proliferation and invasion. In this mechanism, USP3 leads to suppression of Aurora A ubiquitination, resulting less proteasome degradation. We constructed the deubiquitinated mimetic K143R of Aurora A and found that K143R significantly promoted the proliferation and invasion of ESCC cells and was not regulated by the deubiquitination of USP3. Moreover, Aurora A K143R potentiated the kinase activity of Aurora A in ESCC cells. Thus, our findings demonstrate that the tumorigenic feature of ESCC is in part mediated by USP3-facilitated deubiquitination of Aurora A.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5601
Author(s):  
Viktoria Melcher ◽  
Kornelius Kerl

Pediatric brain tumors are genetically heterogeneous solid neoplasms. With a prevailing poor prognosis and widespread resistance to conventional multimodal therapy, these aggressive tumors are the leading cause of childhood cancer-related deaths worldwide. Advancement in molecular research revealed their unique genetic and epigenetic characteristics and paved the way for more defined prognostication and targeted therapeutic approaches. Furthermore, uncovering the intratumoral metrics on a single-cell level placed non-malignant cell populations such as innate immune cells into the context of tumor manifestation and progression. Targeting immune cells in pediatric brain tumors entails unique challenges but promising opportunities to improve outcome. Herein, we outline the current understanding of the role of the immune regulation in pediatric brain tumors.


2021 ◽  
Vol 22 (21) ◽  
pp. 12066
Author(s):  
Xichao Xu ◽  
Yi Zhang ◽  
Xing Wang ◽  
Shun Li ◽  
Liling Tang

Background: Extracellular matrix (ECM)-derived mechanical stimuli regulate many cellular processes and phenotypes through mechanotransduction signaling pathways. Substrate stiffness changes cell phenotypes and promotes angiogenesis, epithelial to mesenchymal transition (EMT), and metastasis in tumors. Enhanced liver tissue matrix stiffness plays a crucial role in the tumorigenesis and malignant development of liver cancer and is associated with unfavorable survival outcomes. However, how liver cancer cells sense changes in ECM stiffness and the underlying molecular mechanisms are largely unknown. Methods: Seeding HepG2 cells on the micropillar gels, HepG2 cells were assessed for responsiveness to mechanotransduction using Western blot and immunofluorescence. Conclusions: We found that higher substrate stiffness dramatically enhanced malignant cell phenotypes and promoted G1/S transition in HepG2 cells. Furthermore, nuclear paraspeckle assembly transcript 1 (NEAT1) was identified as a matrix stiffness-responsive long non-coding RNA (lncRNA) regulating proliferation and EMT in response to increasing matrix stiffness during the progression of HepG2 cells towards liver cancer phenotypes. Higher matrix stiffness contributed to enhancing NEAT1 expression, which activated the WNT/β-catenin pathway. β-catenin translocates and enters the nucleus and the EMT transcription factor zinc finger E-box binding homeobox 1 (ZEB1) was upregulated to trigger EMT. Additionally, the proteins required for matrix stiffness-induced proliferation and resistance were strikingly upregulated in HepG2 cells. Therefore, our findings provide evidence that ECM-derived mechanical signals regulate cell proliferation and drive EMT through a NEAT1/WNT/β-catenin mechanotransduction pathway in the tumor microenvironment of liver cancer.


Sign in / Sign up

Export Citation Format

Share Document