scholarly journals Fast Camera Image Denoising on Mobile GPUs with Deep Learning, Mobile AI 2021 Challenge: Report

Author(s):  
Andrey Ignatov ◽  
Kim Byeoung-Su ◽  
Radu Timofte ◽  
Angeline Pouget ◽  
Fenglong Song ◽  
...  
2018 ◽  
Vol 232 ◽  
pp. 03025
Author(s):  
Baozhong Liu ◽  
Jianbin Liu

Aimed at the problem that the traditional image denoising algorithm is not effective in noise reduction, a new image denoising method is proposed. The method combines deep learning and non-local mean filtering algorithms to denoise the noisy image to obtain better noise reduction effect. By comparing with Gaussian filtering algorithm, median filtering algorithm, bilateral filtering algorithm and early non-local mean filtering algorithm, the noise reduction effect of the new algorithm is better than the traditional method and the peak signal to noise ratio is compared with the early non-local mean algorithm. The performance is better.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3526 ◽  
Author(s):  
Ayhan ◽  
Kwan

In this paper, we introduce an in-depth application of high-resolution disparity map estimation using stereo images from Mars Curiosity rover’s Mastcams, which have two imagers with different resolutions. The left Mastcam has three times lower resolution as that of the right. The left Mastcam image’s resolution is first enhanced with three methods: Bicubic interpolation, pansharpening-based method, and a deep learning super resolution method. The enhanced left camera image and the right camera image are then used to estimate the disparity map. The impact of the left camera image enhancement is examined. The comparative performance analyses showed that the left camera enhancement results in getting more accurate disparity maps in comparison to using the original left Mastcam images for disparity map estimation. The deep learning-based method provided the best performance among the three for both image enhancement and disparity map estimation accuracy. A high-resolution disparity map, which is the result of the left camera image enhancement, is anticipated to improve the conducted science products in the Mastcam imagery such as 3D scene reconstructions, depth maps, and anaglyph images.


2019 ◽  
Vol 96 ◽  
pp. 106945 ◽  
Author(s):  
Inpyo Hong ◽  
Youngbae Hwang ◽  
Daeyoung Kim

2020 ◽  
Vol 29 ◽  
pp. 3695-3706 ◽  
Author(s):  
Ding Liu ◽  
Bihan Wen ◽  
Jianbo Jiao ◽  
Xianming Liu ◽  
Zhangyang Wang ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 1384-1393
Author(s):  
Qingtao Liao

Improving the clarity of medical images is of great significance for doctors to quickly diagnose and analyze the disease. However, the existing image denoising algorithms largely depend on the size of the data set, the optimization effect of the loss function, and the difficulty in adjusting the parameters. Therefore, a medical image denoising algorithm based on deep learning image quality evaluation is proposed. First, the convolution layer of the convolutional neural network and the output of the first full connection layer are used as the perception features. By stacking the perception loss and pixel loss, and multiplying the perception loss by a certain weight, the low and high level loss fusion of the denoising network is realized, so that the restored image is more in line with human perception. Secondly, by introducing empty convolution into the denoising network, the mixed expanded convolution kernel and the ordinary convolution kernel are used together in the first layer to increase the range of sensing field. Then, the feature extraction and the quality score regression are integrated into the same optimization process. Finally, the direct training reconstructed image is transformed into a training noise filter, which reduces the training difficulty and speeds up the convergence of network parameters. The experimental results show that the PSNR and SSIM of the proposed method are 31.63 db and 89.15%, respectively. Compared with other new image denoising methods, the proposed method can achieve better denoising effect.


Sign in / Sign up

Export Citation Format

Share Document