3D augmented reality mobile navigation system supporting indoor positioning function

Author(s):  
Ching-Sheng Wang ◽  
Ding-Jung Chiang ◽  
Yi-Yun Ho
2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Juraj Machaj ◽  
Peter Brida ◽  
Michal Mlynka

This paper deals with navigation of mobile device in outdoor and indoor environment by only navigation system or application. In the paper, the navigation system is proposed in the light of seamless navigation service. Main parts of the system from positioning point of view are based on GPS and WifiLOC system. WifiLOC is an indoor positioning system based on Wi-Fi technology. The proposal of the system will be described in detail. The system is implemented at the University of Zilina as a pilot, noncommercial project; therefore it is called University Mobile Navigation System (UMNS). The navigation system can be characterized as real-time system, that is, the system operations cannot be significantly delayed. Since delay of the system depends significantly on communication platform used for map information downloading or communication with the localization server. We decided to investigate an impact of the used communication platform on the time needs for some of the functions implemented in navigation system. Measurements were performed in the real-world application. Next experiment is focused on testing of the accuracy of used indoor positioning system. Outdoor positioning accuracy is not tested because GPS is utilized in outdoor, and this system was already exhaustively investigated.


2011 ◽  
Vol 131 (7) ◽  
pp. 897-906
Author(s):  
Kengo Akaho ◽  
Takashi Nakagawa ◽  
Yoshihisa Yamaguchi ◽  
Katsuya Kawai ◽  
Hirokazu Kato ◽  
...  

2020 ◽  
Author(s):  
Faiella Eliodoro ◽  
Pacella Giuseppina ◽  
Altomare Carlo ◽  
Andresciani Flavio ◽  
Zobel Beomonte Bruno ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2315
Author(s):  
Yu-Cheng Lo ◽  
Guan-An Chen ◽  
Yin Chun Liu ◽  
Yuan-Hou Chen ◽  
Jui-Ting Hsu ◽  
...  

To improve the accuracy of bracket placement in vivo, a protocol and device were introduced, which consisted of operative procedures for accurate control, a computer-aided design, and an augmented reality–assisted bracket navigation system. The present study evaluated the accuracy of this protocol. Methods: Thirty-one incisor teeth were tested from four participators. The teeth were bonded by novice and expert orthodontists. Compared with the control group by Boone gauge and the experiment group by augmented reality-assisted bracket navigation system, our study used for brackets measurement. To evaluate the accuracy, deviations of positions for bracket placement were measured. Results: The augmented reality-assisted bracket navigation system and control group were used in the same 31 cases. The priority of bonding brackets between control group or experiment group was decided by tossing coins, and then the teeth were debonded and the other technique was used. The medium vertical (incisogingival) position deviation in the control and AR groups by the novice orthodontist was 0.90 ± 0.06 mm and 0.51 ± 0.24 mm, respectively (p < 0.05), and by the expert orthodontist was 0.40 ± 0.29 mm and 0.29 ± 0.08 mm, respectively (p < 0.05). No significant changes in the horizontal position deviation were noted regardless of the orthodontist experience or use of the augmented reality–assisted bracket navigation system. Conclusion: The augmented reality–assisted bracket navigation system increased the accuracy rate by the expert orthodontist in the incisogingival direction and helped the novice orthodontist guide the bracket position within an acceptable clinical error of approximately 0.5 mm.


2012 ◽  
Vol 180 (2) ◽  
pp. 43-54 ◽  
Author(s):  
Kengo Akaho ◽  
Takashi Nakagawa ◽  
Yoshihisa Yamaguchi ◽  
Katsuya Kawai ◽  
Hirokazu Kato ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Eimei Oyama ◽  
Kohei Tokoi ◽  
Ryo Suzuki ◽  
Sousuke Nakamura ◽  
Naoji Shiroma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document