Safe planning and deconfliction for multiple UAVs in high density low altitude urban environments

Author(s):  
Flavia Causa ◽  
Giancarmine Fasano
2019 ◽  
Author(s):  
Corey A. Ippolito ◽  
Kalmanje S. Krishnakumar ◽  
Vahram Stepanyan ◽  
Alfredo Bencomo ◽  
Sebastian Hening ◽  
...  

2006 ◽  
Vol 129 (3) ◽  
pp. 479-487 ◽  
Author(s):  
Cesare A. Hall ◽  
Daniel Crichton

The Silent Aircraft Initiative is a research project funded by the Cambridge-MIT Institute aimed at reducing aircraft noise to the point where it is imperceptible in the urban environments around airports. The propulsion system being developed for this project has a thermodynamic cycle based on an ultrahigh bypass ratio turbofan combined with a variable area exhaust nozzle and an embedded installation. This cycle has been matched to the flight mission and thrust requirements of an all-lifting body airframe, and through precise scheduling of the variable exhaust nozzle, the engine operating conditions have been optimized for maximum thrust at top-of-climb, minimum fuel consumption during cruise, and minimum jet noise at low altitude. This paper proposes engine mechanical arrangements that can meet the cycle requirements and, when installed in an appropriate airframe, will be quiet relative to current turbofans. To reduce the engine weight, a system with a gearbox, or some other form of shaft speed reduction device, is proposed. This is combined with a low-speed fan and a turbine with high gap-chord spacing to further reduce turbomachinery source noise. An engine configuration with three fans driven by a single core is also presented, and this is expected to have further weight, fuel burn, and noise benefits.


Author(s):  
Cesare A. Hall ◽  
Daniel Crichton

The Silent Aircraft Initiative is a research project funded by the Cambridge-MIT Institute aimed at reducing aircraft noise to the point where it is imperceptible in the urban environments around airports. The propulsion system being developed for this project has a thermodynamic cycle based on an ultra-high bypass ratio turbofan combined with a variable area exhaust nozzle and an embedded installation. This cycle has been matched to the flight mission and thrust requirements of an all-lifting body airframe, and through precise scheduling of the variable exhaust nozzle, the engine operating conditions have been optimized for maximum thrust at top-of-climb, minimum fuel consumption during cruise and minimum jet noise at low altitude. This paper proposes engine mechanical arrangements that can meet the cycle requirements and, when installed in an appropriate airframe, will be quiet relative to current turbofans. To reduce the engine weight a system with a gearbox, or some other form of shaft speed reduction device, is proposed. This is combined with a low-speed fan and a turbine with high gap-chord spacing to further reduce turbomachinery source noise. An engine configuration with three fans driven by a single core is also presented and this is expected to have further weight, fuel burn and noise benefits.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4252 ◽  
Author(s):  
Zhichen Pan ◽  
Haoyao Chen ◽  
Silin Li ◽  
Yunhui Liu

Map building and map-based relocalization techniques are important for unmanned vehicles operating in urban environments. The existing approaches require expensive high-density laser range finders and suffer from relocalization problems in long-term applications. This study proposes a novel map format called the ClusterMap, on the basis of which an approach to achieving relocalization is developed. The ClusterMap is generated by segmenting the perceived point clouds into different point clusters and filtering out clusters belonging to dynamic objects. A location descriptor associated with each cluster is designed for differentiation. The relocalization in the global map is achieved by matching cluster descriptors between local and global maps. The solution does not require high-density point clouds and high-precision segmentation algorithms. In addition, it prevents the effects of environmental changes on illumination intensity, object appearance, and observation direction. A consistent ClusterMap without any scale problem is built by utilizing a 3D visual–LIDAR simultaneous localization and mapping solution by fusing LIDAR and visual information. Experiments on the KITTI dataset and our mobile vehicle illustrates the effectiveness of the proposed approach.


2009 ◽  
Vol 478 (1-2) ◽  
pp. 34-42 ◽  
Author(s):  
Ayako Okubo ◽  
Wataru Kanda ◽  
Yoshikazu Tanaka ◽  
Kazuhiro Ishihara ◽  
Daisuke Miki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document