A data-driven trajectory tracking control method based on adaptive Fourier decomposition for linear discrete systems

Author(s):  
Junkang Li ◽  
Yong Fang ◽  
Yu Ge
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1289
Author(s):  
Dongdong Yuan ◽  
Yankai Wang

In order to solve the problems of complex dynamic modeling and parameters identification of quadrotor formation cooperative trajectory tracking control, this paper proposes a data-driven model-free adaptive control method for quadrotor formation based on robust integral of the signum of the error (RISE) and improved sliding mode control (ISMC). The leader-follower strategy is adopted, and the leader realizes trajectory tracking control. A novel asymptotic tracking data-driven controller of quadrotor is used to control the system using the RISE method. It is divided into two parts: The inner loop is for attitude control and the outer loop for position control. Both use the RISE method in the loop to eliminate interference and this method only uses the input and output data of the unmanned aerial vehicle(UAV) system and does not rely on any dynamics and kinematics model of the UAV. The followers realize formation cooperative control, introducing adaptive update law and saturation function to improve sliding mode control (SMC), and it eliminates the general SMC algorithm controller design dependence on the mathematical model of the UAV and has the chattering problem. Then, the stability of the system is proved by the Lyapunov method, and the effectiveness of the algorithm and the feasibility of the scheme are verified by numerical simulation. The experimental results show that the designed data-driven model-free adaptive control method for the quadrotor formation is effective and can effectively realize the coordinated formation trajectory tracking control of the quadrotor. At the same time, the design of the controller does not depend on the UAV kinematics and dynamics model, and it has high control accuracy, stability, and robustness.


Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


Author(s):  
ZeCai Lin ◽  
Wang Xin ◽  
Jian Yang ◽  
Zhang QingPei ◽  
Lu ZongJie

Purpose This paper aims to propose a dynamic trajectory-tracking control method for robotic transcranial magnetic stimulation (TMS), based on force sensors, which follows the dynamic movement of the patient’s head during treatment. Design/methodology/approach First, end-effector gravity compensation methods based on kinematics and back-propagation (BP) neural networks are presented and compared. Second, a dynamic trajectory-tracking method is tested using force/position hybrid control. Finally, an adaptive proportional-derivative (PD) controller is adopted to make pose corrections. All the methods are designed for robotic TMS systems. Findings The gravity compensation method, based on BP neural networks for end-effectors, is proposed due to the different zero drifts in different sensors’ postures, modeling errors in the kinematics and the effects of other uncertain factors on the accuracy of gravity compensation. Results indicate that accuracy is improved using this method and the computing load is significantly reduced. The pose correction of the robotic manipulator can be achieved using an adaptive PD hybrid force/position controller. Originality/value A BP neural network-based gravity compensation method is developed and compared with traditional kinematic methods. The adaptive PD control strategy is designed to make the necessary pose corrections more effectively. The proposed methods are verified on a robotic TMS system. Experimental results indicate that the system is effective and flexible for the dynamic trajectory-tracking control of manipulator applications.


2020 ◽  
Vol 101 (1) ◽  
pp. 233-253
Author(s):  
Jianqing Peng ◽  
Wenfu Xu ◽  
Taiwei Yang ◽  
Zhonghua Hu ◽  
Bin Liang

2018 ◽  
Vol 30 (6) ◽  
pp. 980-990
Author(s):  
Yoshikazu Ohtsubo ◽  
Morihito Matsuyama ◽  
◽  

After the occurrence of a disaster, it is critical to perform rapid and accurate searching operations in the large disaster area. It is efficient to perform such operations using multiple mobile exploration robots. Accordingly, we focus on cooperative cruising in a disaster environment and propose the trajectory tracking control method for a semi-autonomous search robot. We apply a robot operating system (ROS) to execute the trajectory tracking control using two mobile exploration robots. In this paper, we describe the trajectory tracking control using gravity potential method and the results of a cooperative cruising experiment in an uneven terrain environment.


2011 ◽  
Vol 467-469 ◽  
pp. 1421-1426
Author(s):  
Zhi Cheng Hou ◽  
X. Gong ◽  
Y. Bai ◽  
Y.T. Tian ◽  
Q. Sun

This paper deals with the under-actuated characteristic of a quad-rotor unmanned aerial vehicle (UAV). By designing the double loop configuration, the autonomous trajectory tracking is realized. The model uncertainty, external disturbance and the senor noise are also taken into consideration. Then the controller is put forward in the inner loop. An optimal stability augmentation control (SAC) method is used to stabilize the horizon position and keep it away from oscillation. By calculating the nonlinear decouple map, control quantity is converted to the speeds of the four rotors. At last some simulation results and the prototype implementation prove that the control method is effective.


Sign in / Sign up

Export Citation Format

Share Document