autonomous search
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos Garcia-Saura ◽  
Eduardo Serrano ◽  
Francisco B. Rodriguez ◽  
Pablo Varona

AbstractAutonomous robotic search problems deal with different levels of uncertainty. When uncertainty is low, deterministic strategies employing available knowledge result in most effective searches. However, there are domains where uncertainty is always high since information about robot location, environment boundaries or precise reference points is unattainable, e.g., in cave, deep ocean, planetary exploration, or upon sensor or communications impairment. Furthermore, latency regarding when search targets move, appear or disappear add to uncertainty sources. Here we study intrinsic and environmental factors that affect low-informed robotic search based on diffusive Brownian, naive ballistic, and superdiffusive strategies (Lévy walks), and in particular, the effectiveness of their random exploration. Representative strategies were evaluated considering both intrinsic (motion drift, energy or memory limitations) and extrinsic factors (obstacles and search boundaries). Our results point towards minimum-knowledge based modulation approaches that can adjust distinct spatial and temporal aspects of random exploration to lead to effective autonomous search under uncertainty.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 143
Author(s):  
Rudolf Ortner ◽  
Indrajit Kurmi ◽  
Oliver Bimber

In this article we demonstrate that acceleration and deceleration of direction-turning drones at waypoints have a significant influence to path planning which is important to be considered for time-critical applications, such as drone-supported search and rescue. We present a new path planning approach that takes acceleration and deceleration into account. It follows a local gradient ascend strategy which locally minimizes turns while maximizing search probability accumulation. Our approach outperforms classic coverage-based path planning algorithms, such as spiral- and grid-search, as well as potential field methods that consider search probability distributions. We apply this method in the context of autonomous search and rescue drones and in combination with a novel synthetic aperture imaging technique, called Airborne Optical Sectioning (AOS), which removes occlusion of vegetation and forest in real-time.


Automatica ◽  
2021 ◽  
Vol 133 ◽  
pp. 109851
Author(s):  
Wen-Hua Chen ◽  
Callum Rhodes ◽  
Cunjia Liu

Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 110
Author(s):  
Daniel Dworakowski ◽  
Christopher Thompson ◽  
Michael Pham-Hung ◽  
Goldie Nejat

Grocery shoppers must negotiate cluttered, crowded, and complex store layouts containing a vast variety of products to make their intended purchases. This complexity may prevent even experienced shoppers from finding their grocery items, consuming a lot of their time and resulting in monetary loss for the store. To address these issues, we present a generic grocery robot architecture for the autonomous search and localization of products in crowded dynamic unknown grocery store environments using a unique context Simultaneous Localization and Mapping (contextSLAM) method. The contextSLAM method uniquely creates contextually rich maps through the online fusion of optical character recognition and occupancy grid information to locate products and aid in robot localization in an environment. The novelty of our robot architecture is in its ability to intelligently use geometric and contextual information within the context map to direct robot exploration in order to localize products in unknown environments in the presence of dynamic people. Extensive experiments were conducted with a mobile robot to validate the overall architecture and contextSLAM, including in a real grocery store. The results of the experiments showed that our architecture was capable of searching for and localizing all products in various grocery lists in different unknown environments.


2021 ◽  
Author(s):  
Hirotaka Sato ◽  
P. Thanh Tran-Ngoc ◽  
Le Duc Long ◽  
Bing Sheng Chong ◽  
H. Duoc Nguyen ◽  
...  

Abstract There is still a long way to go before artificial mini robots are really used for search and rescue missions in disaster-hit areas due to hindrance in power consumption, computation load of the locomotion, and obstacle-avoidance system. Insect–computer hybrid system, which is the fusion of living insect platform and microcontroller, emerges as an alternative solution. This study demonstrates the first-ever insect–computer hybrid system conceived for search and rescue missions, which is capable of autonomous navigation and human presence detection in an unstructured environment. Customized navigation control algorithm utilizing the insect’s intrinsic navigation capability achieved exploration and negotiation of complex terrains. On-board high-accuracy human presence detection using infrared camera was achieved with a custom machine learning model. Low power consumption suggests system suitability for hour-long operations and its potential for realization in real-life missions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel S. Schloesser ◽  
Derek Hollenbeck ◽  
Christopher T. Kello

AbstractHumans and other complex organisms exhibit intelligent behaviors as individual agents and as groups of coordinated agents. They can switch between independent and collective modes of behavior, and flexible switching can be advantageous for adapting to ongoing changes in conditions. In the present study, we investigated the flexibility between independent and collective modes of behavior in a simulated social foraging task designed to benefit from both modes: distancing among ten foraging agents promoted faster detection of resources, whereas flocking promoted faster consumption. There was a tradeoff between faster detection versus faster consumption, but both factors contributed to foraging success. Results showed that group foraging performance among simulated agents was enhanced by loose coupling that balanced distancing and flocking among agents and enabled them to fluidly switch among a variety of groupings. We also examined the effects of more sophisticated cognitive capacities by studying how human players improve performance when they control one of the search agents. Results showed that human intervention further enhanced group performance with loosely coupled agents, and human foragers performed better when coordinating with loosely coupled agents. Humans players adapted their balance of independent versus collective search modes in response to the dynamics of simulated agents, thereby demonstrating the importance of adaptive flexibility in social foraging.


2021 ◽  
Vol 10 (1) ◽  
pp. 403-414
Author(s):  
Kheireddine Choutri ◽  
Mohand Lagha ◽  
Laurent Dala

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Shurui Fan ◽  
Dongxia Hao ◽  
Xudong Sun ◽  
Yusuf Mohamed Sultan ◽  
Zirui Li ◽  
...  

Emergency response to hazardous gases in the environment is an important research field in environmental monitoring. In recent years, with the rapid development of sensor technology and mobile device technology, more autonomous search algorithms for hazardous gas emission sources are proposed in uncertain environment, which can avoid emergency personnel from contacting hazardous gas in a short distance. Infotaxis is an autonomous search strategy without a concentration gradient, which uses scattered sensor data to track the location of the release source in turbulent environment. This paper optimizes the imbalance of exploitation and exploration in the reward function of Infotaxis algorithm and proposes a mobile strategy for the three-dimensional scene. In two-dimensional and three-dimensional scenes, the average steps of search tasks are used as the evaluation criteria to analyze the information trend algorithm combined with different reward functions and mobile strategies. The results show that the balance between the exploitation item and exploration item of the reward function proposed in this paper is better than that of the reward function in the Infotaxis algorithm, no matter in the two-dimensional scenes or in the three-dimensional scenes.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1389
Author(s):  
Ricardo Soto ◽  
Broderick Crawford ◽  
Rodrigo Olivares ◽  
César Carrasco ◽  
Eduardo Rodriguez-Tello ◽  
...  

In this paper, we integrate the autonomous search paradigm on a swarm intelligence algorithm in order to incorporate the auto-adjust capability on parameter values during the run. We propose an independent procedure that begins to work when it detects a stagnation in a local optimum, and it can be applied to any population-based algorithms. For that, we employ the autonomous search technique which allows solvers to automatically re-configure its solving parameters for enhancing the process when poor performances are detected. This feature is dramatically crucial when swarm intelligence methods are developed and tested. Finding the best parameter values that generate the best results is known as an optimization problem itself. For that, we evaluate the behavior of the population size to autonomously be adapted and controlled during the solving time according to the requirements of the problem. The proposal is testing on the dolphin echolocation algorithm which is a recent swarm intelligence algorithm based on the dolphin feature to navigate underwater and identify prey. As an optimization problem to solve, we test a machine-part cell formation problem which is a widely used technique for improving production flexibility, efficiency, and cost reduction in the manufacturing industry decomposing a manufacturing plant in a set of clusters called cells. The goal is to design a cell layout in such a way that the need for moving parts from one cell to another is minimized. Using statistical non-parametric tests, we demonstrate that the proposed approach efficiently solves 160 well-known cell manufacturing instances outperforming the classic optimization algorithm as well as other approaches reported in the literature, while keeping excellent robustness levels.


Sign in / Sign up

Export Citation Format

Share Document