Stator current and axial magnetic flux analysis of induction motor

Author(s):  
Jan Fulnecck ◽  
Stanislav Misak
2013 ◽  
Vol 4 (1) ◽  
pp. 38-44
Author(s):  
Alexander Burkov ◽  
Evgenii Krasilnikyants ◽  
Alexander Smirnov ◽  
Georgy Bouldukan

Abstract Wide use of induction motor drives makes the problems related to induction motors very topical. One of such problems is the maximal utilization of torque and velocity of induction motors. In this regard the use and accurate adjustment of rotor magnetic flux observers may be helpful. The technique of observer adjustment is subject of special interest. This technique can be regarded as optimal if it ensures constant acceleration that, in turn, corresponds to constant magnitude of active and magnetizing components of stator current. In contrast, nonoptimal tuning of the magnetic flux observer creates a transient response caused by variation of magnetic and active components of the stator current resulting in changing acceleration of the motor. However, the parameters of non-optimal process can be used for fine tuning of the observer which considers the variation of the time constants obtained analyzing the drive's magnetic circuit saturation. It is possible to conclude that implementation of fine adjustment of rotor magnetic flux observer is of critical importance for induction motor torque and velocity maximum utilization.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Konstantinos N. Gyftakis ◽  
Joya Kappatou

The impact of the rotor slot number selection on the induction motors is investigated. Firstly, analytical equations will reveal the spatial harmonic index of the air gap magnetic flux density, connected to the geometrical features and the saturation of the induction motor. Then, six motors with different rotor slot numbers are simulated and studied with FEM. The stator is identical in all motors. The motors are examined under time-harmonic analysis at starting and at 1440 rpm. Their electromagnetic characteristics, such as electromagnetic torque, stator current, and magnetic flux density, are extracted and compared to each other. The analysis will reveal that the proper rotor slot number selection has a strong impact on the induction motor performance.


2016 ◽  
Vol 4 (4) ◽  
pp. 1
Author(s):  
SAHNI JAYANTA KUMAR ◽  
SAHAY KULDEEP ◽  
SINGH SATYENDRA ◽  
◽  
◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 54173-54183
Author(s):  
Arash Fereidooni ◽  
S. Alireza Davari ◽  
Cristian Garcia ◽  
Jose Rodriguez

Author(s):  
Israel Zamudio-Ramirez ◽  
Roque A Alfredo Osornio-Rios ◽  
Jose Alfonso Antonino-Daviu ◽  
Hubert Razik ◽  
Rene de Jesus Romero-Troncoso

2014 ◽  
Vol 695 ◽  
pp. 774-777
Author(s):  
Siti Nur Umira Zakaria ◽  
Erwan Sulaiman

This paper presents magnetic flux analysis of E-Core Hybrid Excited FSM with various rotor pole topologies. The stator consists of three active fluxes sources namely armature coil, field excitation coil and permanent magnet, while the rotor consists of only stack of iron which is greatly reliable for high speed operation. Initially, coil arrangement tests are examined to validate the operating principle of the motor and to identify the zero rotor position. Then, performances of 6S-4P, 6S-5P, 6S-7P and 6S-8P E-Core HEFSMs such as flux path, flux linkage, cogging torque and flux distribution are observed. As conclusion, 6S-5P and 6S-7P designs have purely sinusoidal flux waveform and less cogging torque suitable for high torque and power motor.


2018 ◽  
Vol 27 (4) ◽  
pp. 1166-1173 ◽  
Author(s):  
I. Andrijauskas ◽  
M. Vaitkunas ◽  
R. Adaskevicius

Sign in / Sign up

Export Citation Format

Share Document