Magnetic Flux Analysis of E-Core Hybrid Excited FSM with Various Rotor-Pole Topologies

2014 ◽  
Vol 695 ◽  
pp. 774-777
Author(s):  
Siti Nur Umira Zakaria ◽  
Erwan Sulaiman

This paper presents magnetic flux analysis of E-Core Hybrid Excited FSM with various rotor pole topologies. The stator consists of three active fluxes sources namely armature coil, field excitation coil and permanent magnet, while the rotor consists of only stack of iron which is greatly reliable for high speed operation. Initially, coil arrangement tests are examined to validate the operating principle of the motor and to identify the zero rotor position. Then, performances of 6S-4P, 6S-5P, 6S-7P and 6S-8P E-Core HEFSMs such as flux path, flux linkage, cogging torque and flux distribution are observed. As conclusion, 6S-5P and 6S-7P designs have purely sinusoidal flux waveform and less cogging torque suitable for high torque and power motor.

2018 ◽  
Vol 7 (2.23) ◽  
pp. 157
Author(s):  
M F. Omar ◽  
E Sulaiman ◽  
H A. Soomro ◽  
G M. Romalan ◽  
S M. N. S. Othaman

Recently, a three-phase Field Excitation Flux Switching Motor (FEFSM) with salient rotor structure has been introduced with their advantages of easy rotor temperature elimination and controllable FEC magnetic flux particularly meet for high torque, high power as well as high speed diverse performances. Nevertheless, the salient rotor structure is found to lead a longer magnetic flux path between stator and rotor producing weak flux linkage along with low torque performances. Therefore, a new structure of a single-phase FEFSM using segmental rotor with non-overlap windings is proposed. Segmental rotor and non-overlap windings are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes less weight as well as more robust. Detailed analysis on winding arrangement test analysis, armature and FEC flux linkage, back-EMF and average torque characteristics have been performed by using 2D Finite Element Analysis (FEA) through JMAG version 15 software. The results show that the proposed motor with segmental rotor and non-overlap windings produce short flux path, high flux linkage and the highest torque capability achieved is 0.91 Nm.  


Author(s):  
Mohd Fairoz Omar ◽  
Erwan Sulaiman ◽  
Hassan Ali Soomro ◽  
Faisal Amin ◽  
Laili Iwani Jusoh ◽  
...  

<span>Recently, a three-phase Field Excitation Flux Switching Motor (FEFSM) using salient rotor has been introduced, suitable for high torque, high power as well as high speed diverse performances due to their advantages of easy rotor temperature elimination and controllable field excitation (FE) flux. However, existing FEFSMs are found to have low torque performance as the salient rotor structure has caused longer flux path, and consequently weak flux linkage. Therefore, a new structure of a single-phase FEFSM using segmental rotor and non-overlap windings is proposed. There are two valuable findings found in this topology, first is less copper loss due to the non-overlap windings between armature and FE coils, and secondly the segmental rotor structure has produces shorter flux path to produce high torque, less rotor weight as well as robust rotor at high speed condition. Flux linkage, back-emf, average torque and output power characteristics of the initial and optimized designs have been investigated and compared using 2D Finite Element Analysis (2D-FEA) through JMAG Designer version 15. Based on the 2D-FEA analysis, the average torque has increased by 81.3% to 1.65 Nm, while the output power of 466.5 W, increased of 68.2%. In conclusions, a FEFSM using segmental rotor and non-overlap windings is considered as the best single-phase motor due to their optimal performances and less copper loss.</span>


2014 ◽  
Vol 695 ◽  
pp. 601-604
Author(s):  
Zhafir Aizat Husin ◽  
Erwan Sulaiman ◽  
Faisal Khan ◽  
Mohamed Mubin Aizat Mazlan ◽  
Mohd Fairoz Omar

This paper presents a new structure of field excitation flux switching motor (FEFSM) as an alternative candidate of non-permanent magnet (PM) machine. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. Initially, the coil arrangement tests are examined to validate the operating principle of the motor and to identify the zero rotor position. Furthermore, the profile of flux linkage, induced voltage, cogging torque, torque and power characteristics are observed based on 2D finite element analysis (FEA). Initial performances show that 8S-12P FEFSM produce torque and power of 8.79Nm and 1.5kW, respectively with low cogging torque and sinusoidal flux waveform. Further design refinement and optimization will be conducted to improve the performances of the motor.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3201
Author(s):  
Vannakone Lounthavong ◽  
Warat Sriwannarat ◽  
Apirat Siritaratiwat ◽  
Pirat Khunkitti

An optimal stator design technique of a three-phase doubly salient permanent magnet generator (DSPMG) for improving the output power is proposed. The stator configuration was optimally designed by adjusting the stator pole depth and stator pole arc. The trapezoid outer stator tip was also designed. Then, the output characteristics of the designed DSPMG including the flux linkage, electromotive force (EMF), harmonic, cogging torque, efficiency, magnetic flux distribution and voltage regulation were characterized by using the finite element method. Results were compared to the original structure in the literature. It was found that the flux linkage, EMF, cogging torque, and efficiency of the proposed DSPMG were significantly improved after the stator pole depth and stator pole arc were suitably modified. Further details of optimal stator pole depth and stator pole arc are presented. The EMF produced by the optimal proposed structure was 47% higher than that of the conventional structure, while 56% cogging torque improvement and 20% increased efficiency were achieved. The EMF generated by the proposed structure was classified in the high-range scale compared to the other existing models. The symmetrical magnetic flux distribution of all structures was indicated. The voltage regulation of the modified structure was also significantly improved from the conventional model. The proposed design technique can be utilized to maximize the electromagnetic performance of this particular generator type.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 189
Author(s):  
M. F. Omar ◽  
E. Sulaiman ◽  
H. A. Soomro ◽  
L. I. Jusoh

Field excitation flux switching machines (FEFSMs) in which their torque performance produced by interaction between armature and field excitation (FE) coils have been widely designed for various applications. In this regard, three-phase salient rotor FEFSM with overlap windings is considered the most suitable candidate for high speed applications because of their advantages of flux controllability, and robust due to single piece of rotor structure. However, the overlap windings cause a high copper loss, hence efficiency of the motor becomes low and higher stack length. Besides, the salient rotor structure is found to produce low torque performance due to the longer flux path in stator and rotor yielding weak flux linkage. In this paper, a new single-phase FEFSM using non-overlap windings between armature coils and FE coils is proposed. Both non-overlap windings FEFSMs with salient and segmental rotors have been designed using JMAG Designer version 15 and the investigation process is conducted via 2D finite element analysis. The proposed motor performances verification has been done by comparing the results of flux linkage, flux line and distribution, flux strengthening, various torque capability, and torque-power versus speed characteristics. As a conclusion, single-phase non-overlap windings FEFSM using segmental rotor with power, torque and speed capabilities of 277.5 W, 0.91 Nm and 2,899 rpm, respectively considered as the best candidate for low torque high speed applications.


2015 ◽  
Vol 773-774 ◽  
pp. 771-775 ◽  
Author(s):  
Syed Muhammad Naufal Syed Othman ◽  
Erwan Sulaiman ◽  
Faisal Khan ◽  
Zhafir Aizat Husin ◽  
Mohamed Mubin Aizat Mazlan

Hybrid excitation flux switching machines (HEFSMs) have a several advantages such as robust rotor structure, high torque and power capabilities, and high efficiency suitable for light load and heavy industry applications. However, the general structure of HEFSMs employed with three main flux sources namely permanent magnet (PM), field excitation coil (FEC) and armature coil located on the stator body causes high manufacturing cost. Therefore, a new non-PM field excitation flux switching machine (FEFSM) consists of rugged rotor structure suitable for high-speed operation with capability to keep similar torque and power density of HEFSM is proposed and examined. In this paper, performances of both outer and inner rotor 12S-14P FEFSMs are analyzed and compared. As conclusion, the inner-rotor topology provides much higher torque and power when compared with outer rotor configuration.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 931-939
Author(s):  
Wenping Chai ◽  
Byung-il Kwon

The paper proposes a hybrid-excited wound field synchronous machine (HE-WFSM), which can achieve high reluctance torque utilization. The key of the proposed HE-WFSM is that two permanent magnets (PMs) assist each rotor pole in forming an additional magnetic flux circle. It is opposite to the magnetic flux circle along the q-axis in the WFSM. The reduction of the q-axis flux can help to improve the saliency ratio and reluctance torque. Additionally, the asymmetrical flux linkage achieves a closest current phase angle between the maximum field torque and the maximum reluctance torque. To highlight the advantages of the proposed HE-WRSM, a general WFSM was adopted as the basic machine and analyzed under the same operating conditions. All performances of the basic machine and proposed HE-WFSM were predicted using finite element analysis (FEA) in Jmag-Designer. Finally, it was confirmed that the proposed HE-WRSM can achieve high reluctance torque utilization.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 479
Author(s):  
S. Khalidah Rahimi ◽  
Md. Zarafi Ahmad ◽  
Erwan Sulaiman ◽  
Syed M. Naufal Syed Othman ◽  
Hassan Ali Soomro

In this paper, design analysis of Hybrid- Excited Flux Switching Machine (H-EFSM) with 12Slot-8Pole (12S-8P) and 12Slot-14Pole (12S-14P) topologies are presented. H-EFSM  has  been introduced in which  the advantage  of  Permanent  Magnet  (PM)  machines  and  DC  Field Excitation Coil (FEC) synchronous machines is combined. H-EFSM  design proposed less permanent magnet consumption, high to torque/power density and high efficiency. In recent, most of H-EFSM having FEC arranged  in  theta  direction  that affect in flux production which cause less flux generation and machines performances.  Therefore, a design of 12S-8P and 12S-14P H-EFSM with FEC arranged in radial direction is proposed to prevent flux cancellation and produce high flux linkage. Performance analysis of 12S-8P and 12S-14 H-EFSM such as PM flux, induced voltage, cogging torque and flux distribution are investigated by 2-D Finite Element Analysis (2D-FEA). A design with 12S-14P configuration has achieved the higher torque and power with 220.15Nm and  92.45kW, respectively at maximum field and armature current density


2017 ◽  
Vol 53 (11) ◽  
pp. 1-4 ◽  
Author(s):  
M. F. Omar ◽  
E. Sulaiman ◽  
M. Jenal ◽  
R. Kumar ◽  
R. N. Firdaus

Author(s):  
Siti Khalidah Rahimi ◽  
Zarafi Ahmad ◽  
Erwan Sulaiman ◽  
Enwelum Mbadiwe I ◽  
Syed Muhammad Naufal Syed Othman

This paper presents performance analysis of 12Slot with various rotor pole numbers Hybrid Excitation Flux Switching Machine (HEFSM) for Hybrid Electric Vehicles (HEVs) application. HEFSM has carried out by combining the advantage of Permanent Magnet (PM) machines and DC Field Excitation Coil (FEC) synchronous machines. Previously, most of HEFSM structure having FEC windings in theta direction that create a problem of flux cancellation that will affect the performances of the machine.  Thus, a design of 12Slot HEFSM with FEC wounded in radial direction is proposed to eliminate the flux cancellation effect.  At first, armature coil arrangement test at no-load condition is conducted to analyze PM flux. Furthermore, induced voltage and cogging torque at open circuit condition are investigated based on 2D finite element analysis (FEA). Finally, torque and power performances are also examined at maximum FEC and armature current densities. The outcomes demonstrate that 12S-14P configuration has the highest PM flux linkage, torque, power and less distortion of back-emf waveform which are required to be used as a motor in HEVs. The highest torque and power achieved are 220.15Nm and 92.45kW, respectively.


Sign in / Sign up

Export Citation Format

Share Document