flux path
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 29)

H-INDEX

9
(FIVE YEARS 1)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 284
Author(s):  
Ruchao Pupadubsin ◽  
Seubsuang Kachapornkul ◽  
Prapon Jitkreeyarn ◽  
Pakasit Somsiri ◽  
Kanokvate Tungpimolrut

The goal of this paper is to present a comparative analysis of two types of winding arrangements for a three-phase 12/8 switched reluctance motor (SRM), where short- and fully-pitched winding arrangements under unipolar operation are considered. From the analytical results, the short-pitched winding has the best torque per copper weight ratio. The core loss based on counting the number of flux reversals in the stator yoke for each winding arrangement is also proposed and mentioned. To reduce the magnetic flux reversals in the stator core, changing the direction of the magnetic flux path by modifying the winding polarities of the short-pitched winding could reduce 10–13% of core loss compared to the conventional winding. A 1 kW, 12/8 SRM prototype for the ventilation fan application is constructed and tested in order to verify the design consideration of winding configuration. At the rated condition, a maximum efficiency around 82.5% could be achieved.


Author(s):  
Quoc Hung Nguyen ◽  
Van Bien Nguyen ◽  
Hiep Dai Le ◽  
Do Qui Duyen ◽  
Weihua Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Warat Sriwannarat ◽  
Pattasad Seangwong ◽  
Apirat Siritaratiwat ◽  
Nuwantha Fernando ◽  
Yuttana Dechgummarn ◽  
...  

This paper introduces the pole ratio adjustment technique to improve the torque characteristics of the doubly salient permanent magnetic machine (DSPM). The electrical characteristics of the machine, namely the magnetic field distribution, flux linkage, back-electromotive force (EMF), and cogging torque, were obtained under open-circuit conditions. The electromagnetic torque and ripple torque were examined under the loaded condition. The simulations, based on the 2D-finite element method, show that the optimal pole ratio for the DSPM structure is with 18 stator teeth and 15 rotor poles. This optimal structure achieves a larger phase back-EMF than the conventional structure, as well as had a better magnetic flux path with a reasonable cogging torque. The on-load test also confirmes that the proposed optimal structure can produce a significantly higher electromagnetic torque than the conventional machine while maintaining a satisfactory torque ripple. Furthermore, an experimental prototype of the DSPM structure having 18/15 stator/rotor poles was fabricated and tested to verify the simulations. The experimental results were in good agreement with the simulations. The design technique and the fabricated prototype demonstrate the DSPM utilization for low-speed/high torque applications.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 118
Author(s):  
Haining Zhao ◽  
Ran Zhou ◽  
Yongquan Guo ◽  
Junjie Jin ◽  
Shenbo Yu ◽  
...  

Magnetic suspension technology has been a promising method to achieve contactless movement, and its advantages are smooth motion, no wear, no noise and low maintenance. In previous studies, the suspension force was mainly controlled by the current in the coils, which can lead to energy loss. To solve the problem of energy loss, we have proposed a novel zero-power permanent magnetic suspension system with variable flux path control (ZPPMSS-VFPC); moreover, the interference suppression and response of the ZPPMSS-VFPC need to be further investigated. This paper aims to improve the robustness and decrease the response time for the ZPPMSS-VFPC; as a result, a fuzzy cascade controller composed of a fuzzy controller and a cascade controller is designed and applied, in which the investigated fuzzy cascade control methods include the position loop fuzzy cascade control (PLFCC) and angle loop fuzzy cascade control (ALFCC). The structure and the working principle of the proposed ZPPMSS-VFPC are introduced, and the theoretical modeling and the fuzzy cascade controller design of the system are exhibited. An experimental setup is established to validate the simulation results and to investigate the control effect of the designed controller. The experimental results demonstrate that the response times of the fuzzy cascade controller at the displacement disturbance and the force disturbance are 0.5 s and 0.6 s faster than those of the cascade control, respectively. Furthermore, the control effect of the PLFCC is better than that of the ALFCC. Overall, the fuzzy cascade controller not only has the characteristics of strong adaptability but also has the characteristics of easy adjustment parameters, which can be applied to the complex magnetic suspension system.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1495-1504
Author(s):  
Fangchao Xu ◽  
Yongquan Guo ◽  
Ran Zhou ◽  
Junjie Jin ◽  
Chuan Zhao ◽  
...  

To solve the problem of reduction of suspension force of permanent magnet system with variable magnetic flux path control, according to the structure of the system, suspension principle of the permanent magnet system with variable magnetic flux path control and the generation principle of the load torque, the influence of the mechanical structure of the system on the suspension force is analyzed by changing part of parameters of the system structure. The results show that the existence of magnetic isolation plate is the main reason for the decrease of suspension force, the permanent magnet ring can be thickened to 11.91 mm, the annular gap can be reduced to 1 mm, thickness of the “F” shaped magnetizer can be increased to 9 mm to increase the suspension force.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 517-525
Author(s):  
Mohamad El Youssef ◽  
Adrien Van Gorp ◽  
Stéphane Clenet ◽  
Abdelkader Benabou ◽  
Pierre Faverolle ◽  
...  

AbstractIn this article, an experimental procedure is presented to handle magnetic measurements under uniaxial tensile stress reaching the plastic domain. The main advantage of the proposed procedure is that it does not require an additional magnetic core to close the magnetic flux path through the studied sample. The flux flows only in the sample, and no parasitic air gaps are introduced, thus avoiding the use of the H-coil to evaluate the magnetic field, which is often very sensitive and not easy to calibrate. A specimen of nonoriented FeSi (1.3%) sheet (M330-35A) is characterized under uniaxial tensile stress. To validate the proposed procedure, a comparison with the single sheet tester procedure is carried out. The results obtained by the two procedures are in good agreement. Moreover, to illustrate the possibilities offered by the proposed procedure, we confirm some results obtained in the literature. We show that the positive plastic strain leads to a significant degradation of magnetic behavior. An applied tensile stress on a virgin (unstrained) sample leads to a degradation of the magnetic behavior. However, on a pre-strained sample, an applied tensile stress results in reducing the deterioration caused by the plastic strain until a stress value called optimum is attained. Above this threshold, the magnetic behavior re-deteriorates progressively.


2020 ◽  
Vol 2020 (0) ◽  
pp. 530
Author(s):  
Takeshi MIZUNO ◽  
Shigenori KUROSAWA ◽  
Yuji ISHINO ◽  
Daisuke YAMAGUCH ◽  
Masaya TAKASAKI

Sign in / Sign up

Export Citation Format

Share Document