scholarly journals Semi-Analytical Method for the Extraction of the System Parameters in Application to Kinetic Energy Harvesters

Author(s):  
Andrii Sokolov ◽  
Oskar Z. Olszewski ◽  
Ruth Houlihan ◽  
Michael Peter Kennedy ◽  
Elena Blokhina
2013 ◽  
Vol 22 (7) ◽  
pp. 075022 ◽  
Author(s):  
Stephen P Beeby ◽  
Leran Wang ◽  
Dibin Zhu ◽  
Alex S Weddell ◽  
Geoff V Merrett ◽  
...  

Author(s):  
Jian Lin ◽  
Robert G. Parker

Abstract The natural frequency and vibration mode sensitivities to system parameters are rigorously investigated for both tuned and mistimed planetary gears. Parameters under consideration include support and mesh stiffnesses, component masses, and moments of inertia. Using the well-defined vibration mode properties of tuned (cyclically symmetric) planetary gears [1], the eigensensitivities are calculated and expressed in simple, exact formulae. These formulae connect natural frequency sensitivity with the modal strain or kinetic energy and provide efficient means to determine the sensitivity to all stiffness and inertia parameters by inspection of the modal energy distribution. While the terminology of planetary gears is used throughout, the results apply for general epicyclic gears.


2018 ◽  
Vol 1052 ◽  
pp. 012027
Author(s):  
A Ghaffarinejad ◽  
Y Lu ◽  
R Hinchet ◽  
D Galayko ◽  
J Y Hasani ◽  
...  

2012 ◽  
Vol 23 (13) ◽  
pp. 1533-1541 ◽  
Author(s):  
Clemens Cepnik ◽  
Eric M Yeatman ◽  
Ulrike Wallrabe

This article discusses how a nonhomogeneous magnetic field with a nonconstant flux gradient affects the behavior of electromagnetic vibration energy harvesters. Based on simulations, the authors show that this nonlinearity enables to increase the output power and bandwidth but not to effectively limit the oscillator vibration amplitude. The impact, however, depends on various system parameters, especially the mechanical damping. Comparing the results to an energy-harvesting prototype, one can conclude that, in practice, the linear model based on a homogeneous magnetic field provides a good estimate. The authors finally give suggestions about magnetic fields that are beneficial for energy harvesting.


Author(s):  
Giorgio De Pasquale ◽  
Aurelio Somà ◽  
Nicolò Zampieri

The constant spread of commercial trades on railways demand development of alternative diagnostic systems, which are suitable to applications without electric supply and convenient for the industrial development and diffusion, which means low cost, good reliability, and high integrability. Similarly, it is possible to install navigation and traceability systems (for instance, by the use of global positioning systems—GPS—transmitters) to control on demand the travel history of the train and even that of each coach separately. Recent studies demonstrated the possibility to generate directly onboard the electric power needed to the supply of simple diagnostic systems based on low power sensors and integrated wireless transmission modules. The design of this kind of generators is based on the idea of converting the kinetic energy of train vibration to electric energy, through appropriate energy harvesters containing electromechanical transducers dimensioned ad hoc. The goal of this work is to validate the design procedure for energy harvesters addressed to the railway field. The input vibration source of the train has been simulated through numerical modeling of the vehicle and the final harvester prototype has been tested on a scaled roller rig. The innovative configuration of magnetic suspended proof mass is introduced in the design to fit the input vibration spectra of the vehicle. From the coupled study of the harvester generator and the vehicle, the effective output power of the device is predicted by means of a combination of experimental and simulation tests. The generator demonstrated the ability to supply a basic sensing and transceiving node by converting the kinetic energy of a train vibration in normal traveling conditions. The final device package is 150 × 125 × 95 mm, and its output voltage and current are 2.5 V and 50 mA, respectively, when the freight train velocity is 80 km/h. The corresponding output power is almost 100 mW.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hemin Zhang ◽  
Frédéric Marty ◽  
Xin Xia ◽  
Yunlong Zi ◽  
Tarik Bourouina ◽  
...  

Author(s):  
Philippe Basset ◽  
Elena Blokhina ◽  
Dimitri Galayko

Sign in / Sign up

Export Citation Format

Share Document