Dynamic model of Brushless Synchronous Generator with turn-to-turn short circuit fault for condition monitoring

Author(s):  
Nadarajan Sivakumar ◽  
Bicky Bhangu ◽  
S.K. Panda ◽  
Amit Kumar Gupta
2021 ◽  
Vol 11 (24) ◽  
pp. 11734
Author(s):  
Branko Tomičić ◽  
Antonija Šumiga ◽  
Josip Nađ ◽  
Dunja Srpak

During transients that occur in an electric network, large currents can flow and large electromagnetic torques can be developed in electric generators. Accurate calculation of currents and magnetic fields during transients is an important element in the optimal design of generators and network parts, as well as mechanical parts of machines and other torque transmission parts. This paper describes the modeling of a sudden three-phase short-circuit on a synchronous generator using the finite element method (FEM) and the dynamic model. The model for simulations that use the FEM was built in the MagNet software package, and the dynamic model is embedded in the MATLAB/Simulink software package. The dynamic simulation model of a part of a network with two identical generators, represented by equivalent parameters, was developed. The results obtained after the simulation of a sudden three-phase fault in the generators by both methods are presented, including three-phase voltages, three-phase currents, machine speeds, excitation voltages, and mechanical power. In particular, the short-circuit current in the phase with the highest peak value was analyzed to determine the accuracy of the equivalent parameters used in the dynamic model. Finally, the results of these two calculation methods are compared, and recommendations are presented for the application of different modeling methods.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Yu-Ling He ◽  
Zhi-Jie Zhang ◽  
Xiao-Long Wang ◽  
Peng Gao ◽  
David Gerada ◽  
...  

In order to comprehensively study and identify the electromagnetic torque (EMT) difference among the single static air-gap eccentricity (SAGE) fault, the single stator interturn short circuit fault (SISC), and the combined fault composed of these two, this article investigates the EMT ripple properties due to the mentioned three faults. Different from other studies, this paper considers not only the effect of the single fault types but also the impact of the single fault combinations on the EMT ripple characteristics. Detailed EMT expressions for each fault are firstly derived on the basis of the magnetic flux density (MFD) analysis. Then, finite element calculation and experimental study on a CS-5 prototype generator with two poles at 3000 rpm, which is specifically designed and manufactured ourselves, are carried out to validate the analysis result. It is found that the three faults will induce different ripple components in EMT. The combined faults have the most intensive impact sensitivity on the EMT ripples, while the single SAGE fault ranks the last in the impact effect.


Sign in / Sign up

Export Citation Format

Share Document