scholarly journals Verification Methodology for Simulation Models of the Synchronous Generator on Transients Analysis

2021 ◽  
Vol 11 (24) ◽  
pp. 11734
Author(s):  
Branko Tomičić ◽  
Antonija Šumiga ◽  
Josip Nađ ◽  
Dunja Srpak

During transients that occur in an electric network, large currents can flow and large electromagnetic torques can be developed in electric generators. Accurate calculation of currents and magnetic fields during transients is an important element in the optimal design of generators and network parts, as well as mechanical parts of machines and other torque transmission parts. This paper describes the modeling of a sudden three-phase short-circuit on a synchronous generator using the finite element method (FEM) and the dynamic model. The model for simulations that use the FEM was built in the MagNet software package, and the dynamic model is embedded in the MATLAB/Simulink software package. The dynamic simulation model of a part of a network with two identical generators, represented by equivalent parameters, was developed. The results obtained after the simulation of a sudden three-phase fault in the generators by both methods are presented, including three-phase voltages, three-phase currents, machine speeds, excitation voltages, and mechanical power. In particular, the short-circuit current in the phase with the highest peak value was analyzed to determine the accuracy of the equivalent parameters used in the dynamic model. Finally, the results of these two calculation methods are compared, and recommendations are presented for the application of different modeling methods.

2021 ◽  
Vol 39 (5A) ◽  
pp. 723-737
Author(s):  
Yamur M. Obied ◽  
Thamir M. Abdul Wahhab

The coordination between protective devices is the process of determining the most appropriate timing of power interruption during abnormal conditions in the power system. The aim of this work is to coordinate the protection of the 33/11 kV power distribution substation in Iraq using the CYME 7.1 software package. In this paper overcurrent and earth fault relays are simulated in two cases, with time delay setting and instantaneous setting, to obtain the Time Current Characteristics (TCC) curves for each Circuit Breaker (CB) relay of Al-Karama substation (2×31.5 MVA, 33/11 kV) in Babil distribution network. The short circuit current at each CB is calculated and accordingly, the protection coordination for Al-Karama substation has been simulated. The TCC curves have been obtained in two cases for overcurrent and earth fault relays; in a case with time delay setting and in the case with the instantaneous setting. The setting takes into consideration the short circuit current at the furthest point of the longest outgoing feeder and the shortest outgoing feeder.


2021 ◽  
pp. 74-83
Author(s):  
YURI D. VOLCHKOV ◽  

Abstract. The load current aff ects the value of the short-circuit current in the electric network and, consequently, the voltage value. In some cases, this infl uence must be taken into account for the correct choice of switching devices, remote monitoring the operating modes of electric networks, and determining the modes. It is possible to disconnect loads connected through magnetic starters and contactors. Failure to consider the infl uence of the load current can lead to an incorrect interpretation of the identifi ed grid operating modes during remote monitoring and, as a result, incorrect dispatcher’s decisions. In addition, it is also insuffi cient to specify the choice of switching devices in the 10 kV feed network. The article describes a method for analyzing the three-phase short circuit mode in a 10 kV feed network, taking into account the infl uence of load currents. The method is exemplifi ed by the case of an actual electric network – the 10 kV ring feed network containing reclosers and receiving power from diff erent sections of lowvoltage buses of the “Kulikovskaya” 110/35/10 kV substation, belonging to the Branch of PJSC «DGC of Center”-“Orelenergo.” For this network, the values of the three-phase short-circuit currents at points with diff erent distances from the substation buses have been determined. The authors have fi guredout the values of the load currents and their shares in the total short-circuit current. The voltage values at different points of the network in the case of short circuits have also been determined. The research proves that the effect of the load current on the total short-circuit current should be taken into account for the case of remote short circuits.


1994 ◽  
Vol 267 (6) ◽  
pp. G1012-G1020 ◽  
Author(s):  
M. C. Chen ◽  
A. Chang ◽  
T. Buhl ◽  
M. Tanner ◽  
A. H. Soll

We used primary monolayer cultures of enzyme-dispersed canine oxyntic mucosal cells mounted in Ussing chambers to characterize the apical barrier to H+. [3H]mannitol flux (MF) and [14C]inulin flux (IF) were used as size probes for tight junctions. Apical H+ produced a three-phase effect. In phase 1, as the apical pH was decreased from 7 to about 2.5, resistance (R) increased, but short-circuit current (Isc) did not change. In phase 2, an increased paracellular permeability developed at pH below 2.5-1.7, evidenced by decreased R and increased MF but not IF. Size sieving and monolayer integrity were preserved, and this paracellular leak was either fully reversed or stabilized by apical neutralization, depending on the duration of the paracellular leak. In phase 3, after sustained exposure to an apical pH below approximately 2, transepithelial integrity was lost; R decreased to fluid R, and both MF and IF increased. Basolateral acidification below pH 5.5 produced rapid monolayer disruption. Low concentrations of cytochalasin D (CD) decreased R and increased MF but not IF; apical acidification to pH 4 after CD increased R and decreased the MF, indicating reduced paracellular permeability by apical H+. Apical amiloride did not alter Isc; however, after 48 h of treatment with hydrocortisone and insulin, an amiloride-sensitive Isc component became evident. Our data indicate that the increase in R observed with apical acidification reflects decreased paracellular permeability and that the earliest injury with apical acidification is a selective paracellular leak.


2014 ◽  
Vol 953-954 ◽  
pp. 582-586
Author(s):  
Tao Li ◽  
Zhi Yong Dai ◽  
Ai Qing Luo ◽  
Shu Pan ◽  
Xi Cong Xiong ◽  
...  

The transient characteristics of induction generator (IG) were investigated in the paper, and the analytic formula of its stator current under three-phase short circuit in distribution network was derived. According to the change law of IG rotor speed under the grid fault, an evaluation method to determine the current peak of three-phase short circuit for induction generator in distribution grid is proposed. The correctness of the proposed method was verified by the fifth electromagnetic transient model of IG in PSCAD/EMTDC simulation software.


Sign in / Sign up

Export Citation Format

Share Document