Smart Home Energy Management Considering Real-Time Energy Pricing of Plug-in Electric Vehicles

Author(s):  
Sima Aznavi ◽  
Poria Fajri ◽  
Arash Asrari
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2304 ◽  
Author(s):  
Mingfu Li ◽  
Guan-Yi Li ◽  
Hou-Ren Chen ◽  
Cheng-Wei Jiang

To reduce the peak load and electricity bill while preserving the user comfort, a quality of experience (QoE)-aware smart appliance control algorithm for the smart home energy management system (sHEMS) with renewable energy sources (RES) and electric vehicles (EV) was proposed. The proposed algorithm decreases the peak load and electricity bill by deferring starting times of delay-tolerant appliances from peak to off-peak hours, controlling the temperature setting of heating, ventilation, and air conditioning (HVAC), and properly scheduling the discharging and charging periods of an EV. In this paper, the user comfort is evaluated by means of QoE functions. To preserve the user’s QoE, the delay of the starting time of a home appliance and the temperature setting of HVAC are constrained by a QoE threshold. Additionally, to solve the trade-off problem between the peak load/electricity bill reduction and user’s QoE, a fuzzy logic controller for dynamically adjusting the QoE threshold to optimize the user’s QoE was also designed. Simulation results demonstrate that the proposed smart appliance control algorithm with a fuzzy-controlled QoE threshold significantly reduces the peak load and electricity bill while optimally preserving the user’s QoE. Compared with the baseline case, the proposed scheme reduces the electricity bill by 65% under the scenario with RES and EV. Additionally, compared with the method of optimal scheduling of appliances in the literature, the proposed scheme achieves much better peak load reduction performance and user’s QoE.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2562
Author(s):  
Leehter Yao ◽  
Fazida Hanim Hashim ◽  
Chien-Chi Lai

A home energy management system (HEMS) was designed in this paper for a smart home that uses integrated energy resources such as power from the grid, solar power generated from photovoltaic (PV) panels, and power from an energy storage system (ESS). A fuzzy controller is proposed for the HEMS to optimally manage the integrated power of the smart home. The fuzzy controller is designed to control the power rectifier for regulating the AC power in response to the variations in the residential electric load, solar power from PV panels, power of the ESS, and the real-time electricity prices. A self-learning scheme is designed for the proposed fuzzy controller to adapt with short-term and seasonal climatic changes and residential load variations. A parsimonious parameterization scheme for both the antecedent and consequent parts of the fuzzy rule base is utilized so that the self-learning scheme of the fuzzy controller is computationally efficient.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1060
Author(s):  
Md Mamun Ur Rashid ◽  
Majed A. Alotaibi ◽  
Abdul Hasib Chowdhury ◽  
Muaz Rahman ◽  
Md. Shafiul Alam ◽  
...  

From a residential point of view, home energy management (HEM) is an essential requirement in order to diminish peak demand and utility tariffs. The integration of renewable energy sources (RESs) together with battery energy storage systems (BESSs) and central battery storage system (CBSS) may promote energy and cost minimization. However, proper home appliance scheduling along with energy storage options is essential to significantly decrease the energy consumption profile and overall expenditure in real-time operation. This paper proposes a cost-effective HEM scheme in the microgrid framework to promote curtailing of energy usage and relevant utility tariff considering both energy storage and renewable sources integration. Usually, the household appliances have different runtime preferences and duration of operation based on user demand. This work considers a simulator designed in the C++ platform to address the domestic customer’s HEM issue based on usages priorities. The positive aspects of merging RESs, BESSs, and CBSSs with the proposed optimal power sharing algorithm (OPSA) are evaluated by considering three distinct case scenarios. Comprehensive analysis of each scenario considering the real-time scheduling of home appliances is conducted to substantiate the efficacy of the outlined energy and cost mitigation schemes. The results obtained demonstrate the effectiveness of the proposed algorithm to enable energy and cost savings up to 37.5% and 45% in comparison to the prevailing methodology.


Sign in / Sign up

Export Citation Format

Share Document