Long-term Stability Analysis of Vertical Channel Damping and Kalman Filtering for Inertial Navigation System/Vertical Gauge

Author(s):  
Chan Gook Park ◽  
Jaehyuck Cha ◽  
Hojin Ju
2019 ◽  
Vol 11 (4) ◽  
pp. 139-154
Author(s):  
M. RAJA ◽  
Gaurav ASTHANA ◽  
Ajay SINGH ◽  
Ashna SINGHAL ◽  
Pallavi LAKRA

Navigation has a huge application in aviation and aircraft automatic approach. Two widely used navigation systems are Global position System (GPS) and Inertial Navigation System (INS). Triangulation method used to determine the aircrafts location by GPS, speed whereas an INS, with the aid of gyroscope and accelerometer, estimates the location, velocity and alignment of an aircraft. Aircraft navigation is a complex task and using only one of the above navigation systems results in inaccurate and insufficient data. GPS stops working when satellite signal is not received, susceptible to interfere occasionally has high noise content, and has a low bandwidth, INS system requires external information for initialization has long-term drift errors. Certain errors like ionosphere interference, clock error, orbital error, position error, etc. might arise and disrupt the navigation process. In order to outrun the limitations of the above two systems and counter the errors, both INS and GPS can be integrated and used to attain more smooth, accurate and faster aircraft attitude estimates, as they have complementary strengths and limitations. GPS is stable for a long period and can act as an independent navigation system whereas INS is not susceptible to interference and signal losses has high radio bandwidth and works well for short intervals of time. In order to get accurate and precise attitude estimation, calculation of the parameters at different altitude using both systems is done; furthermore the comparison and contrast between the results is performed, measured quantities are transformed between various frames like longitudinal to rolling, calculation and elimination of errors is done producing the final solution. Because of integrated GPS and INS, the navigation system exhibits robustness, higher bandwidth, better noise characteristics, and long-term stability.


2017 ◽  
Vol 2017 (3) ◽  
pp. 84-106
Author(s):  
Stanisław Popowski ◽  
Witold Dąbrowski

Abstract The article presents the Individual Autonomous System Navigation (IANS) supporting–rescuer or firemen in terms of navigation. Basic assumptions, which such a system has to fulfill in terms of functionality and accuracy, are presented. The concept of the ISAN system is based on the implementation of inertial navigation system which the only one to permit fully autonomous functioning. Measurement sensors of the navigation system with microprocessor board are placed in the rescuer’s shoe. To limit the escalation of the navigation errors value, which in the case of inertial navigation rises exponentially, a procedure of navigation parameters upgrading at every step of the rescuer is introduced to the proposed system. This procedure guarantees the required accuracy of navigation achievement. The article describes a developed and manufactured demonstrator of the technology and presents main results of its research. The research conducted in a building consisted in walking on the same level several hundred meters in less than 10 minutes. A walking test with a change of walking height was also performed in order to estimate the accuracy of the vertical channel. Results of the demonstrator’s tests let us conclude that the error of navigation is below 1% of the travelled distance and the accuracy is linear in respect to time. The achieved accuracy is fully sufficient for a practical IANS application.


2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


Sign in / Sign up

Export Citation Format

Share Document