satellite signal
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 68)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Ibrahim Abba ◽  
◽  
Salisu Muhammad ◽  
Lawan Bashir D. Bala ◽  
Emmanuel Joseph ◽  
...  

Lack of equipment to study mobile satellites signal propagation in colleges and universities prone this research work. A Handheld GPS receiver used as a tool for training college students to learn mobile satellite signal propagation using Global Positioning System (GPS) approach. These refer to the experimental setup of the equipment that is the connection done between the GPS receiver with a computer. The satellite propagation data received from the GPS machine can be recorded continuously with an updates rate of 2 seconds. The experiment was carried out in an open space environment at predetermine locations using simple setup, where a cheap, readily and available portable GPS receiver were connected to the computer to acquire propagation data. The computer was equipped with a self-developed package graphical user interface (GUI) monitoring the propagation information from the GPS satellites and saving the data. The developed system can be set up anywhere at any location. The sate-up will serve as a database for satellites view and analysis of mobile satellite data orbiting the sky of Northern part of Nigeria. Cost effective referring to a low-cost and readily available GPS receiver that can be easily set-up as compared to equipment designed specifically for an experimental purpose that is normally very expensive.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 494
Author(s):  
Philip J. Knight ◽  
Cai O. Bird ◽  
Alex Sinclair ◽  
Jonathan Higham ◽  
Andrew J. Plater

Spatially explicit data on tidal and waves are required as part of coastal monitoring applications (e.g., radar monitoring of coastal change) for the design of interventions to mitigate the impacts of climate change. A deployment over two tidal cycles of a low-cost Global Navigation Satellite System (GNSS) buoy at Rossall (near Fleetwood), UK demonstrated the potential to record good quality sea level and wave data within the intertidal zone. During each slack water and the following ebb tide, the sea level data were of good quality and comparable with data from nearby tide gauges on the national tide gauge network. Moreover, the GNSS receiver was able to capture wave information and these compared well with data from a commercial wave buoy situated 9.5 km offshore. Discontinuities were observed in the elevation data during flood tide, coincident with high accelerations and losing satellite signal lock. These were probably due to strong tidal currents, which, combined with spilling waves, would put the mooring line under tension and allow white water to spill over the antenna resulting in the periodic loss of GNSS signals, hence degrading the vertical solutions.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042093
Author(s):  
Xizi Jia ◽  
Yuanfa Ji ◽  
Wentao Fu ◽  
Weibin Liang ◽  
Bingye Pan

Abstract In terms of quality control of ambiguity estimation, the common partial ambiguity fixation algorithm is improved, and the SC-PAR (Single frequency Combined Partial Ambiguity Resolution) algorithm is proposed. After the algorithm fails to fix the full ambiguity, it filters the ambiguity subset step by step according to the number of continuous satellite lock epochs, satellite elevation angle, satellite signal-to-noise ratio, geometric precision factor, ambiguity variance and ambiguity precision attenuation factor, and searches Optimal ambiguity subset. According to the R-ratio value and the success rate index, the search results are jointly tested, and the remaining subsets are corrected with the subsets that pass the test. The results show that compared with the FAR and conventional PAR algorithms, the fixed rate of the SC-PAR algorithm is increased by 65.01% and 27.97%, respectively, and the accuracy is also significantly improved.


Aviation ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 171-181
Author(s):  
Michal Hvezda

Satellite navigation has become a very important topic in the air transport industry along with its application in instrument approach procedures. Recently, extracted statistical characteristics of the European Geostationary Navigation Overlay Service (EGNOS) satellite signal have been made available from real measurements in the Czech Republic. The numerical modeling approach is taken for a feasibility study of automatic aircraft control during the Localizer Performance with Vertical Guidance (LPV) precision approach based on such navigation data. The model incorporates Kalman filtering of the stochastic navigation signal, feed-back control of L-410 aircraft dynamics and the calculation of approach progress along the predefined procedure. Evaluation of the performance of the system prototype is performed using the scenarios developed with a strong interest in altitude control. The specific scenario is focused on a curved approach which offers a huge advantage of the approaches based on the Satellite-based Augmentation System (SBAS) compared to ones with the Instrument Landing System (ILS). Outputs of simulation executions are statistically analyzed and assessed against predefined navigation performance goals equivalent to ILS categories with a positive outcome.


2021 ◽  
Vol 4 (164) ◽  
pp. 122-127
Author(s):  
M. Kukhar ◽  
O. Dobrokhodova ◽  
A. Evdokіmov ◽  
M. Myronenko

In modern conditions, geodetic equipment is moving to a new level of development. Previously, the devices developed in the direction of developing accuracy. Now geodetic instruments provide sufficient accuracy to perform work in the field of geodesy. In this regard, there is a need to optimize the workflow: increase the efficiency of information collection, the amount of information collected per unit time, increase the efficiency of standard tasks in geodesy. This need characterizes a new stage in the development of geodetic instruments. The study uses methods: observation - to get acquainted with modern geodetic equipment, abstraction – to determine the conceptual technical features of modern electronic geodetic instruments (used specific examples), analysis – to identify trends in modern electronic surveying instruments, sampling – to select instruments to be characterize their categories. The analysis of the capabilities of modern electronic devices on the example of the total station Leica Nova MS60 and GNSS receiver Leica GS18 I was carried out. It was found that at the moment characteristic of the development of modern geodetic equipment is the optimization of the workflow using these devices through the development of hardware and software for these devices. For example, in total stations it is an expansion of opportunities, automation of processes of geodetic works. In GNSS receivers – this is an increase in the amount of information collected, reducing the impact of the shortcomings of the satellite signal. Much of this technical development has been provided by modern software, such as Captivate at Leica. Trends in the development of other and similar modern geodetic equipment are also going in this direction. This statement is characterized by the limits of development of the technical part of the geodetic equipment and significant opportunities for development in the software part.


Author(s):  
A. Torresani ◽  
S. Rigon ◽  
E. M. Farella ◽  
F. Menna ◽  
F. Remondino

Abstract. Augmented Reality (AR) is already transforming many fields, from medical applications to industry, entertainment and heritage. In its most common form, AR expands reality with virtual 3D elements, providing users with an enhanced and enriched experience of the surroundings. Until now, most of the research work focused on techniques based on markers or on GNSS/INS positioning. These approaches require either the preparation of the scene or a strong satellite signal to work properly. In this paper, we investigate the use of visual-based methods, i.e., methods that exploit distinctive features of the scene estimated with Visual Simultaneous Localization and Mapping (V-SLAM) algorithms, to determine and track the user position and attitude. The detected features, which encode the visual appearance of the scene, can be saved and later used to track the user in successive AR sessions. Existing AR frameworks like Google ARCore, Apple ARKit and Unity AR Foundation recently introduced visual-based localization in their frameworks, but they target mainly small scenarios. We propose a new Mobile Augmented Reality (MAR) methodology that exploits OPEN-V-SLAM to extend the application range of Unity AR Foundation and better handle large-scale environments. The proposed methodology is successfully tested in both controlled and real-case large heritage scenarios. Results are available also in this video: https://youtu.be/Q7VybmiWIuI.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Li Yang ◽  
Danshi Sun ◽  
Haote Ruan

In order to overcome the problems of the traditional algorithm, such as the time-consuming execution of acquisition instructions, low signal tracking accuracy, and low signal capture accuracy, a global satellite positioning receiver acquisition and tracking algorithm based on UWB technology is designed in this study. On the basis of expounding the pulse generation method and working principle in UWB technology, this paper analyzes in detail the characteristics of UWB technology, such as antimultipath, low power consumption, and strong penetration. Then, on the basis of window function filtering, in the process of three-dimensional search of global satellite positioning signal, firstly, the satellite signal entering the GPS software receiver is processed by RF front-end mixing and AD sampling, and then, the signal tracking and navigation message solving are completed according to the relationship between the influence factor and Doppler frequency offset. The experimental results show that the execution time of the acquisition instruction of the proposed algorithm varies between 1129 ms and 1617 ms; the signal tracking accuracy ranges between 0.931 and 0.951, and the signal capture accuracy ranges between 93.3% and 95.6%, which proves that the proposed algorithm has achieved the design expectation.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5552
Author(s):  
Daniel Janos ◽  
Przemysław Kuras

Positioning with low-cost GNSS (Global Navigation Satellite System) receivers is becoming increasingly popular in many engineering applications. In particular, dual-frequency receivers, which receive signals of all available satellite systems, offer great possibilities. The main objective of this research was to evaluate the accuracy of a position determination using low-cost receivers in different terrain conditions. The u-blox ZED-F9P receiver was used for testing, with the satellite signal supplied by both a dedicated u-blox ANN-MB-00 low-cost patch antenna and the Leica AS10 high-precision geodetic one. A professional Leica GS18T geodetic receiver was used to acquire reference satellite data. In addition, on the prepared test base, observations were made using the Leica MS50 precise total station, which provided higher accuracy and stability of measurement than satellite positioning. As a result, it was concluded that the ZED-F9P receiver equipped with a patch antenna is only suitable for precision measurements in conditions with high availability of open sky. However, the configuration of this receiver with a geodetic-grade antenna significantly improves the quality of results, beating even professional geodetic equipment. In most cases of the partially obscured horizon, a high precision positioning was obtained, making the ZED-F9P a valuable alternative to the high-end geodetic receivers in many applications.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4702
Author(s):  
Karolina Krzykowska-Piotrowska ◽  
Ewa Dudek ◽  
Mirosław Siergiejczyk ◽  
Adam Rosiński ◽  
Wojciech Wawrzyński

The increase in the role of companion robots in everyday life is inevitable, and their safe communication with the infrastructure is one of the fundamental challenges faced by designers. There are many challenges in the robot’s communication with the environment, widely described in the literature on the subject. The threats that scientists believe have the most significant impact on the robot’s communication include denial-of-service (DoS) attacks, satellite signal spoofing, external eavesdropping, spamming, broadcast tampering, and man-in-the-middle attacks. In this article, the authors attempted to identify communication threats in the new robot-to-infrastructure (R2I) model based on available solutions used in transport, e.g., vehicle-to-infrastructure (V2I), taking into account the threats already known affecting the robot’s sensory systems. For this purpose, all threats that may occur in the robot’s communication with the environment were analyzed. Then the risk analysis was carried out, determining, in turn, the likelihood of potential threats occurrence, their consequence, and ability of detection. Finally, specific methods of responding to the occurring threats are proposed, taking into account cybersecurity aspects. A critical new approach is the proposal to use communication and protocols so far dedicated to transport (IEEE 802.11p WAVE, dedicated short-range communications (DSRC)). Then, the companion’s robot should be treated as a pedestrian and some of its sensors as an active smartphone.


Sign in / Sign up

Export Citation Format

Share Document