Miniaturized dual-band II-shaped monopole antennas with modified rectangular ground plane

Author(s):  
Yuktitath Chawanonphithak ◽  
Chuwong Phongcharoenpanich
Author(s):  
P Syam Sundar ◽  
Sarat K Kotamraju ◽  
B T P Madhav ◽  
M Sreehari ◽  
K Raghavendra Rao ◽  
...  

In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation.


Author(s):  
P Syam Sundar ◽  
Sarat K Kotamraju ◽  
B T P Madhav ◽  
M Sreehari ◽  
K Raghavendra Rao ◽  
...  

In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


2002 ◽  
Vol 38 (16) ◽  
pp. 849 ◽  
Author(s):  
H. Xin ◽  
K. Matsugatani ◽  
M. Kim ◽  
J. Hacker ◽  
J.A. Higgins ◽  
...  

Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bing Li ◽  
Jing-song Hong

Two novel dual band-notched ultra-wideband (UWB) printed monopole antennas with simple structure and small size are presented. The size of both antennas is25×25×0.8 mm3. The bandwidth of one of the proposed antenna can be from 2.7 GHz to 36.8 GHz, except the bandwidth of 3.2–3.9 GHz for WiMAX applications and 5.14–5.94 GHz for WLAN applications. The bandwidth of the other is ranging for 2.7 to 41.1 GHz, except the bandwidth of 3.2–3.9 GHz for WiMAX applications and 4.8–5.9 GHz for WLAN applications. Bandwidths of the antennas are about 512% and 455% wider than those of conventional band-notched UWB antennas, respectively. In addition, the time-domain characteristics of the two antennas are investigated to show the difference between both antennas.


Sign in / Sign up

Export Citation Format

Share Document