A Multi-Temporal Convolutional Autoencoder Neural Network for Cloud Removal in Remote Sensing Images

Author(s):  
Wassana Sintarasirikulchai ◽  
Teerasit Kasetkasem ◽  
Tsuyoshi Isshiki ◽  
Thitiporn Chanwimaluang ◽  
Preesan Rakwatin
Author(s):  
W. Yuan ◽  
X. Yuan ◽  
Z. Fan ◽  
Z. Guo ◽  
X. Shi ◽  
...  

Abstract. Building Change Detection (BCD) via multi-temporal remote sensing images is essential for various applications such as urban monitoring, urban planning, and disaster assessment. However, most building change detection approaches only extract features from different kinds of remote sensing images for change index determination, which can not determine the insignificant changes of small buildings. Given co-registered multi-temporal remote sensing images, the illumination variations and misregistration errors always lead to inaccurate change detection results. This study investigates the applicability of multi-feature fusion from both directly extract 2D features from remote sensing images and 3D features extracted by the dense image matching (DIM) generated 3D point cloud for accurate building change index generation. This paper introduces a graph neural network (GNN) based end-to-end learning framework for building change detection. The proposed framework includes feature extraction, feature fusion, and change index prediction. It starts with a pre-trained VGG-16 network as a backend and uses U-net architecture with five layers for feature map extraction. The extracted 2D features and 3D features are utilized as input into GNN based feature fusion parts. In the GNN parts, we introduce a flexible context aggregation mechanism based on attention to address the illumination variations and misregistration errors, enabling the framework to reason about the image-based texture information and depth information introduced by DIM generated 3D point cloud jointly. After that, the GNN generated affinity matrix is utilized for change index determination through a Hungarian algorithm. The experiment conducted on a dataset that covered Setagaya-Ku, Tokyo area, shows that the proposed method generated change map achieved the precision of 0.762 and the F1-score of 0.68 at pixel-level. Compared to traditional image-based change detection methods, our approach learns prior over geometrical structure information from the real 3D world, which robust to the misregistration errors. Compared to CNN based methods, the proposed method learns to fuse 2D and 3D features together to represent more comprehensive information for building change index determination. The experimental comparison results demonstrated that the proposed approach outperforms the traditional methods and CNN based methods.


2019 ◽  
Vol 11 (11) ◽  
pp. 1284 ◽  
Author(s):  
Wenhui Du ◽  
Zhihao Qin ◽  
Jinlong Fan ◽  
Maofang Gao ◽  
Fei Wang ◽  
...  

Cloud-free remote sensing images are required for many applications, such as land cover classification, land surface temperature retrieval and agricultural-drought monitoring. Cloud cover in remote sensing images can be pervasive, dynamic and often unavoidable. Current techniques of cloud removal for the VNIR (visible and near-infrared) bands still encounters the problem of pixel values estimated for the cloudy area incomparable and inconsistent with the cloud-free region in the target image. In this paper, we proposed an efficient approach to remove thick clouds and their shadows in VNIR bands using multi-temporal images with good maintenance of DN (digital number) value consistency. We constructed the spectral similarity between the target image and reference one for DN value estimation of the cloudy pixels. The information reconstruction was done with 10 neighboring cloud-free pair-pixels with the highest similarity over a small window centering the cloudy pixel between target and reference images. Four Landsat5 TM images around Nanjing city of Jiangsu Province in Eastern China were used to validate the approach over four representative surface patterns (mountain, plain, water and city) for diverse sizes of cloud cover. Comparison with the conventional approaches indicates high accuracy of the approach in cloud removal for the VNIR bands. The approach was applied to the Landsat8 OLI (Operational Land Imager) image on 29 April 2016 in Nanjing area using two reference images. Very good consistency was achieved in the resulted images, which confirms that the proposed approach could be served as an alternative for cloud removal in the VNIR bands using multi-temporal images.


Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sign in / Sign up

Export Citation Format

Share Document