The program complex wavelet processing of the results ultrasonic and microwave research of power plants

Author(s):  
Valery G. Efimov ◽  
Julia N. Lozhkova ◽  
Mikhail N. Gorbunov
2020 ◽  
Vol 2020 (4) ◽  
pp. 43-51 ◽  
Author(s):  
Vyacheslav Andreev ◽  
Mariya Berberova ◽  
Oleg Zolotarev ◽  
Vladislav Chuenko ◽  
Egor Karpushin ◽  
...  

A project is aimed at the development of models, algorithms and a program complex to carry out measures for safety increase and risk decrease during development of new nuclear power plants (NPP) and operation of working nuclear power ones. A basic novelty of the project is the development of a methodical apparatus for the estimate a radiation risk at NPP in case of the most dangerous (beyond-design) failures with the emission of origins of thermal neurons with the low density of a flow. Atomic piles based on the use of fission energy of heavy nuclei fission are powerful sources of gamma and neuron radiation. The project is aimed at the computer modeling and development of new methods, algorithms and a program complex for the problem solution in the estimate of safety and risks at NPPs at the most dangerous (beyond-design) failures with the emission of thermal neurons sources with the low density of a flow. To realize the project it is necessary to develop a methodical approach to the solution of problems in the estimate of doses of external and internal irradiation and the estimate of damage for the population living around NPPs at the most dangerous (beyond-design failures with the emission of thermal neurons sources with the low density of a flow taking into account a population age structure. On the basis of these solutions there will be offered measures to decrease a risk and safety increase NPP safety.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Author(s):  
John D. Rubio

The degradation of steam generator tubing at nuclear power plants has become an important problem for the electric utilities generating nuclear power. The material used for the tubing, Inconel 600, has been found to be succeptible to intergranular attack (IGA). IGA is the selective dissolution of material along its grain boundaries. The author believes that the sensitivity of Inconel 600 to IGA can be minimized by homogenizing the near-surface region using ion implantation. The collisions between the implanted ions and the atoms in the grain boundary region would displace the atoms and thus effectively smear the grain boundary.To determine the validity of this hypothesis, an Inconel 600 sample was implanted with 100kV N2+ ions to a dose of 1x1016 ions/cm2 and electrolytically etched in a 5% Nital solution at 5V for 20 seconds. The etched sample was then examined using a JEOL JSM25S scanning electron microscope.


Author(s):  
Marjorie B. Bauman ◽  
Richard F. Pain ◽  
Harold P. Van Cott ◽  
Margery K. Davidson

2005 ◽  
Vol 19 (6) ◽  
pp. 18
Author(s):  
S. Gordon
Keyword(s):  

1984 ◽  
Vol 45 (C1) ◽  
pp. C1-867-C1-870
Author(s):  
A. M. Hatch ◽  
P. G. Marston ◽  
R. J. Thome ◽  
A. M. Dawson ◽  
W. G. Langton ◽  
...  

2010 ◽  
pp. 50-56 ◽  
Author(s):  
Pablo T. León ◽  
Loreto Cuesta ◽  
Eduardo Serra ◽  
Luis Yagüe

Sign in / Sign up

Export Citation Format

Share Document