Performance Analysis of Perturb and Observe, Incremental Conductance and Robust Sliding Mode MPPT Controllers for a 500KW PV Based Microgrid Using Actual Solar Irradiance Data

Author(s):  
Sayyeda Umbereen Bano ◽  
Attaullah Y. Memon
Solar Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 508-517
Author(s):  
Grant Buster ◽  
Michael Rossol ◽  
Galen Maclaurin ◽  
Yu Xie ◽  
Manajit Sengupta

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jehun Hahm ◽  
Hyoseok Kang ◽  
Jaeho Baek ◽  
Heejin Lee ◽  
Mignon Park

This paper proposes an integrated photovoltaic (PV) and proton exchange membrane fuel cell (PEMFC) system for continuous energy harvesting under various operating conditions for use with a brushless DC motor. The proposed scheme is based on the incremental conductance (IncCond) algorithm combined with the sliding mode technique. Under changing atmospheric conditions, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of maximum power point tracking (MPPT) is particularly important. To manage such a hybrid system, control strategies need to be established to achieve the aim of the distributed system. Firstly, a Matlab/Simulink based model of the PV and PEMFC is developed and validated, as well as the incremental conductance sliding (ICS) MPPT technique; then, different MPPT algorithms are employed to control the PV array under nonuniform temperature and insolation conditions, to study these algorithms effectiveness under various operating conditions. Conventional techniques are easy to implement but produce oscillations at MPP. Compared to these techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state and provides more precise tracking.


Author(s):  
Shivangi Dwivedi ◽  
Pritika Yadav ◽  
Renu ◽  
Priyanshi Gupta ◽  
A Ambikapathy ◽  
...  

2015 ◽  
Vol 719-720 ◽  
pp. 596-599
Author(s):  
Xin Wen Duan ◽  
Yue Zhang

The application of virtual instrument technology to design solar irradiance acquisition system, an ideal combination of software and hardware, is aimed at collecting, storing and analyzing data of external temperature and solar irradiance.The data proves helpful in assessing whether the solar energy resource deserves to be developded economically.The system is reliable and has been verified by simulation software proteus.


Sign in / Sign up

Export Citation Format

Share Document