Sequence Circuit-Based Modeling of a Doubly Fed Induction Wind Generator for Eccentricity Diagnosis by Split-Phase Current Signature Analysis

Author(s):  
Claudio Bruzzese ◽  
Francesco Trentini ◽  
Ezio Santini ◽  
Gojko Joksimovic
2019 ◽  
Vol 26 (3) ◽  
pp. 431-458 ◽  
Author(s):  
Yuri Merizalde ◽  
Luis Hernández-Callejo ◽  
Oscar Duque-Pérez ◽  
Víctor Alonso-Gómez

Purpose Despite the wide dissemination and application of current signature analysis (CSA) in general industry, CSA is not commonly used in the wind industry, where the use of vibration signals predominates. Therefore, the purpose of this paper is to review the use of generator CSA (GCSA) in the online fault detection and diagnosis of wind turbines (WTs). Design/methodology/approach This is a bibliographical investigation in which the use of GCSA for the maintenance of WTs is analyzed. A section is dedicated to each of the main components, including the theoretical foundations on which GCSA is based and the methodology, mathematical models and signal processing techniques used by the proposals that exist on this topic. Findings The lack of appropriate technology and mathematical models, as well as the difficulty involved in performing actual studies in the field and the lack of research projects, has prevented the expansion of the use of GCSA for fault detection of other WT components. This research area has yet to be explored, and the existing investigations mainly focus on the gearbox and the doubly fed induction generator; however, modern signal treatment and artificial intelligence techniques could offer new opportunities in this field. Originality/value Although literature on the use of GCSA for the detection and diagnosis of faults in WTs has been published, these papers address specific applications for each of the WT components, especially gearboxes and generators. For this reason, the main contribution of this study is providing a comprehensive vision for the use of GCSA in the maintenance of WTs.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4514
Author(s):  
Vincent Becker ◽  
Thilo Schwamm ◽  
Sven Urschel ◽  
Jose Alfonso Antonino-Daviu

The growing number of variable speed drives (VSDs) in industry has an impact on the future development of condition monitoring methods. In research, more and more attention is being paid to condition monitoring based on motor current evaluation. However, there are currently only a few contributions to current-based pump diagnosis. In this paper, two current-based methods for the detection of bearing defects, impeller clogging, and cracked impellers are presented. The first approach, load point-dependent fault indicator analysis (LoPoFIA), is an approach that was derived from motor current signature analysis (MCSA). Compared to MCSA, the novelty of LoPoFIA is that only amplitudes at typical fault frequencies in the current spectrum are considered as a function of the hydraulic load point. The second approach is advanced transient current signature analysis (ATCSA), which represents a time-frequency analysis of a current signal during start-up. According to the literature, ATCSA is mainly used for motor diagnosis. As a test item, a VSD-driven circulation pump was measured in a pump test bench. Compared to MCSA, both LoPoFIA and ATCSA showed improvements in terms of minimizing false alarms. However, LoPoFIA simplifies the separation of bearing defects and impeller defects, as impeller defects especially influence higher flow ranges. Compared to LoPoFIA, ATCSA represents a more efficient method in terms of minimizing measurement effort. In summary, both LoPoFIA and ATCSA provide important insights into the behavior of faulty pumps and can be advantageous compared to MCSA in terms of false alarms and fault separation.


Sign in / Sign up

Export Citation Format

Share Document