On the accuracy of complex permittivity model of glucose/water solutions for non-invasive microwave blood glucose sensing

Author(s):  
Volkan Turgul ◽  
Izzet Kale
Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6820
Author(s):  
Bushra Alsunaidi ◽  
Murad Althobaiti ◽  
Mahbubunnabi Tamal ◽  
Waleed Albaker ◽  
Ibraheem Al-Naib

The prevalence of diabetes is increasing globally. More than 690 million cases of diabetes are expected worldwide by 2045. Continuous blood glucose monitoring is essential to control the disease and avoid long-term complications. Diabetics suffer on a daily basis with the traditional glucose monitors currently in use, which are invasive, painful, and cost-intensive. Therefore, the demand for non-invasive, painless, economical, and reliable approaches to monitor glucose levels is increasing. Since the last decades, many glucose sensing technologies have been developed. Researchers and scientists have been working on the enhancement of these technologies to achieve better results. This paper provides an updated review of some of the pioneering non-invasive optical techniques for monitoring blood glucose levels that have been proposed in the last six years, including a summary of state-of-the-art error analysis and validation techniques.


2012 ◽  
Vol 10 (8) ◽  
pp. 083002-83005 ◽  
Author(s):  
Wanjie Zhang Wanjie Zhang ◽  
Rong Liu Rong Liu ◽  
Wen Zhang Wen Zhang ◽  
Jiaxiang Zheng Jiaxiang Zheng ◽  
Kexin Xu Kexin Xu

2011 ◽  
Author(s):  
Jingying Jiang ◽  
Lingling Zhang ◽  
Qiliang Gong ◽  
Kexin Xu

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6925
Author(s):  
Liu Tang ◽  
Shwu Jen Chang ◽  
Ching-Jung Chen ◽  
Jen-Tsai Liu

In recent years, with the rise of global diabetes, a growing number of subjects are suffering from pain and infections caused by the invasive nature of mainstream commercial glucose meters. Non-invasive blood glucose monitoring technology has become an international research topic and a new method which could bring relief to a vast number of patients. This paper reviews the research progress and major challenges of non-invasive blood glucose detection technology in recent years, and divides it into three categories: optics, microwave and electrochemistry, based on the detection principle. The technology covers medical, materials, optics, electromagnetic wave, chemistry, biology, computational science and other related fields. The advantages and limitations of non-invasive and invasive technologies as well as electrochemistry and optics in non-invasives are compared horizontally in this paper. In addition, the current research achievements and limitations of non-invasive electrochemical glucose sensing systems in continuous monitoring, point-of-care and clinical settings are highlighted, so as to discuss the development tendency in future research. With the rapid development of wearable technology and transdermal biosensors, non-invasive blood glucose monitoring will become more efficient, affordable, robust, and more competitive on the market.


2014 ◽  
Author(s):  
Satoru Suzuki ◽  
Akane Ishida ◽  
Pradeep K. W. Abeygunawardhana ◽  
Kenji Wada ◽  
Akira Nishiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document