Spectrum correction considering light source fluctuation for non-invasive blood glucose sensing

2014 ◽  
Author(s):  
Satoru Suzuki ◽  
Akane Ishida ◽  
Pradeep K. W. Abeygunawardhana ◽  
Kenji Wada ◽  
Akira Nishiyama ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6820
Author(s):  
Bushra Alsunaidi ◽  
Murad Althobaiti ◽  
Mahbubunnabi Tamal ◽  
Waleed Albaker ◽  
Ibraheem Al-Naib

The prevalence of diabetes is increasing globally. More than 690 million cases of diabetes are expected worldwide by 2045. Continuous blood glucose monitoring is essential to control the disease and avoid long-term complications. Diabetics suffer on a daily basis with the traditional glucose monitors currently in use, which are invasive, painful, and cost-intensive. Therefore, the demand for non-invasive, painless, economical, and reliable approaches to monitor glucose levels is increasing. Since the last decades, many glucose sensing technologies have been developed. Researchers and scientists have been working on the enhancement of these technologies to achieve better results. This paper provides an updated review of some of the pioneering non-invasive optical techniques for monitoring blood glucose levels that have been proposed in the last six years, including a summary of state-of-the-art error analysis and validation techniques.


2012 ◽  
Vol 10 (8) ◽  
pp. 083002-83005 ◽  
Author(s):  
Wanjie Zhang Wanjie Zhang ◽  
Rong Liu Rong Liu ◽  
Wen Zhang Wen Zhang ◽  
Jiaxiang Zheng Jiaxiang Zheng ◽  
Kexin Xu Kexin Xu

2011 ◽  
Author(s):  
Jingying Jiang ◽  
Lingling Zhang ◽  
Qiliang Gong ◽  
Kexin Xu

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6925
Author(s):  
Liu Tang ◽  
Shwu Jen Chang ◽  
Ching-Jung Chen ◽  
Jen-Tsai Liu

In recent years, with the rise of global diabetes, a growing number of subjects are suffering from pain and infections caused by the invasive nature of mainstream commercial glucose meters. Non-invasive blood glucose monitoring technology has become an international research topic and a new method which could bring relief to a vast number of patients. This paper reviews the research progress and major challenges of non-invasive blood glucose detection technology in recent years, and divides it into three categories: optics, microwave and electrochemistry, based on the detection principle. The technology covers medical, materials, optics, electromagnetic wave, chemistry, biology, computational science and other related fields. The advantages and limitations of non-invasive and invasive technologies as well as electrochemistry and optics in non-invasives are compared horizontally in this paper. In addition, the current research achievements and limitations of non-invasive electrochemical glucose sensing systems in continuous monitoring, point-of-care and clinical settings are highlighted, so as to discuss the development tendency in future research. With the rapid development of wearable technology and transdermal biosensors, non-invasive blood glucose monitoring will become more efficient, affordable, robust, and more competitive on the market.


2017 ◽  
Vol 10 (02) ◽  
pp. 1650041
Author(s):  
Congcong Ma ◽  
Jia Qin ◽  
Qi Zhang ◽  
Junsheng Lu ◽  
Kexin Xu ◽  
...  

Previous results show that the floating reference theory (FRT) is an effective tool to reduce the influence of interference factors on noninvasive blood glucose sensing by near-infrared spectroscopy (NIRS). It is the key to measure the floating reference point (FRP) precisely for the application of FRT. Monte Carlo (MC) simulation has been introduced to quantitatively investigate the effects of positioning errors and light source drifts on measuring FRP. In this article, thinning and calculating method (TCM) is proposed to quantify the positioning error. Meanwhile, the normalization process (NP) is developed to significantly reduce the error induced by light source drift. The results according to TCM show that 7[Formula: see text][Formula: see text]m deviations in positioning can generate about 10.63% relative error in FRP. It is more noticeable that 1% fluctuation in light source intensity may lead to 12.21% relative errors. Gratifyingly, the proposed NP model can effectively reduce the error caused by light source drift. Therefore, the measurement system for FRPs must meet that the positioning error is less than 7[Formula: see text][Formula: see text]m, and the light source drift is kept within 1%. Furthermore, an improvement for measurement system is proposed in order to take advantage of the NP model.


Sign in / Sign up

Export Citation Format

Share Document