Research on two-stage planning method of electric vehicle charging station based on immune algorithm

Author(s):  
Shengwei Li ◽  
Xulu Fan ◽  
Shang Gao ◽  
Qiao Sun ◽  
Xingzhen Bai
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lifeng Yang ◽  
Zhongwei Cheng ◽  
Baojie Zhang ◽  
Fengyun Ma

The promotion of electric vehicles and their charging facilities to achieve carbon emission reduction is a research hotspot in the field of transportation. Aiming at the comprehensive decision of electric vehicle charging station (EVCS) location, this paper constructs an EVCS location evaluation index system that includes five indexes of grid load, traffic facilities, user preference, construction cost, and service radius. Firstly, we convert the exact number into interval judgment matrix, introduce Shapley fuzzy measure to calculate the weight of factors, and use the two-stage optimization model to further optimize the weight. Then, we combine the multiple criteria decision-making (MCDM) method in the Pythagorean fuzzy environment with partitioned normalized weighted Bonferroni mean (PFPNWBM) operator, and calculate the optimal ranking of alternatives according to the performance function and the accuracy function. Finally, a numerical example is used to analyze the difference between first-order linear optimization and two-stage optimization in alternative scheme evaluation, and the practical value of using model to evaluate EVCS location is verified.


2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


Sign in / Sign up

Export Citation Format

Share Document