Insulating paper ageing and furfural formation

Author(s):  
P. Pahlavanpour ◽  
Eklund ◽  
M.A. Martins
2019 ◽  
Vol 139 (2) ◽  
pp. 130-135
Author(s):  
Masanobu Yoshida ◽  
Yoshinori Konishi ◽  
Masamichi Kato

2018 ◽  
Vol 69 (5) ◽  
pp. 1139-1144
Author(s):  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Livia Carmen Ungureanu ◽  
Valerica Stanoi ◽  
Traian Rus

For the purpose of using three different types of painting materials for the inner protection of the transformer vats, their behavior was studied under actual conditions of operation in the transformer (thermal stress in electro-insulating fluid based on the natural ester in contact with copper for electro-technical use and electro-insulating paper). By comparing determination of the content in furans products (HPLC technique) and gases formed (by gas-chromatography) in the electro-insulating fluid (natural ester with high oleic content) thermally aged at 130 �C to 1000 hours in closed glass vessels, it have been found that the presence the investigated painting materials lead to a change in the mechanism and kinetics of the thermo-oxidation processes. These changes are supported by oxygen dissolved in oil, what leads to decrease both to gases formation CO2, CO, H2, CH4, C2H4 and C2H6) and furans products (5-HMF, 2-FOL, 2 -FAL and 2-ACF). The painting materials investigated during the heat treatment applied did not suffer any remarkable structural changes affecting their functionality in the electro-insulating fluid based on vegetable esters.


2020 ◽  
Author(s):  
Natalia Zhuravleva ◽  
Dmitry Kiesewetter ◽  
Alexandr Reznik ◽  
Ekaterina Smirnova ◽  
Albert Khripunov ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 427 ◽  
Author(s):  
Sherif S. M. Ghoneim

The continuity of transformer operation is very necessary for utilities to maintain a continuity of power flow in networks and achieve a desired revenue. Most failures in a transformer are due to the degradation of the insulating system, which consists of insulating oil and paper. The degree of polymerization (DP) is a key detector of insulating paper state. Most research in the literature has computed the DP as a function of furan compounds, especially 2-furfuraldehyde (2-FAL). In this research, a prediction model was constructed based on some of most periodical tests that were conducted on transformer insulating oil, which were used as predictors of the insulating paper state. The tests evaluated carbon monoxide (CO), carbon dioxide (CO2), breakdown voltage (VBD), interfacial tension (IF), acidity (ACY), moisture (M), oil color (OC), and 2-furfuraldehyde (2-FAL). The DP, which was used as the key indicator for the paper state, was categorized into five classes labeled 1, 2, 3, 4, and 5 to express the insulating paper normal aging rate, accelerating aging rate, excessive aging danger zone, high risk of failure, and the end of expected life, respectively. The classification techniques were applied to the collected data samples to construct a prediction model for the insulating paper state, and the results revealed that the fine tree was the best classifier of the data samples, with a 96.2% prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document