Estimation of energy potential of point absorber buoy type wave energy converter

Author(s):  
Abdullah Al Mahfazur Rahman ◽  
Md. Moniruzzaman ◽  
M. Al Mamun
Author(s):  
Tomoki Taniguchi ◽  
Shunka C. Hirao ◽  
Kentaroh Kokubun ◽  
Tadashi Nimura ◽  
Shigesuke Ishida ◽  
...  

Author(s):  
Tomoki Taniguchi ◽  
Jun Umeda ◽  
Toshifumi Fujiwara ◽  
Hiroki Goto ◽  
Shunji Inoue

This paper addresses experimental and numerical validation of power output efficiency about an approximate complex-conjugate control with considering the copper loss (ACL) method. A bottom-fixed point absorber type wave energy convertor (WEC) model was used for the experiments carried out at National Maritime Research Institute, Japan (NMRI). In order to model a power take-off (PTO) system constructed by a permanent magnet linear generator (PMLG), a liner shaft motor (LSM) was used for the model test. To investigate characteristics of the ACL method, the resistive load control (RLC) method and approximate complex-conjugate control (ACC) method were also tested by the WEC model. A simulation code based on WEC-Sim (Wave Energy Converter SIMulator) v2.0 written by MATLAB/Simulink, which is developed by collaboration works between the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (Sandia), was used for the validation. The simulated results in regular waves have good agreement with measured ones in terms of the float heave motion, the vertical force and the control input force. Through the experiments and numerical simulations in regular waves, the ACL method has advantages in high power production compared with the RLC and the ACC methods for the WEC model. In addition, the power output characteristics of the ACL method in irregular waves were checked experimentally and numerically.


Author(s):  
Emiliano Renzi ◽  
Frederic Dias

A mathematical model for a flap-type wave energy converter is derived in the framework of a linear inviscid potential flow theory. The wave field resulting from the interaction of an incident plane wave with the flap is determined by applying Green’s integral theorem to the fluid domain. The hydrodynamic parameters of the system are determined, allowing to solve the equation of motion of the flap and to obtain the capture factor of the device. Asymptotic analysis in the far field yields new relations between the hydrodynamic parameters of the system, which reveal the peculiarity of a flap-type device with respect to traditional point-absorber converters. Finally, comparison is made between the behaviour of the device in the open ocean and in a channel. It is shown that the effect of the channel lateral walls on the system can concur to increase its performance.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1731
Author(s):  
Dan Montoya ◽  
Elisabetta Tedeschi ◽  
Luca Castellini ◽  
Tiago Martins

Wave energy is nowadays one of the most promising renewable energy sources; however, wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC), in order to extract the maximum energy from the waves, while respecting the physical constraints of the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally, MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position, speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique requires bidirectional power flow between the PTO system and the grid, it has similar characteristics as reactive control. This means that, under some operating conditions, the energy losses may be equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization problem significantly more expensive in terms of computational time. This work proposes two MPC control strategies applied to a two-body point absorber that address this issue from two different perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear constraints in the MPC in order to only allow an unidirectional power flow. The results show that the two alternative proposals have similar performance in terms of computational time compared to the regular MPC and obtain considerably more power than the linear passive control, thus proving to be a good option for unidirectional PTO systems.


Author(s):  
Yutaro Sasahara ◽  
Mitsuhiro Masuda ◽  
Kiyokazu Minami

When concrete examination towards utilization is needed, it is necessary to estimate the safety and the performance of a floating Oscillation Water Column (OWC)-type wave energy converter under abnormal oceanographic phenomenon such as large waves, wave impact force, deck wetness and complex motion of mooring system. Therefore, to choose a proper numerical method is important. This present paper describes a fundamental study about estimation of safety and performance of floating OWC-type wave energy converter using the two-phase flow MPS method. In this research, firstly, new algorithm is installed in order to solve problems of the two-phase flow MPS method. Secondly, applicability to an response analysis of a wharf installation type OWC-WEC of the improved MPS method is examined by wave pressure acting to the OWC-WEC and response in the air chamber of the OWC-WEC.


Sign in / Sign up

Export Citation Format

Share Document