Recognizing Pain in Motor Imagery EEG Recordings Using Dynamic Functional Connectivity Graphs

Author(s):  
Foroogh Shamsi ◽  
Ali Haddad ◽  
Laleh Naja zadeh
2020 ◽  
Author(s):  
Foroogh Shamsi ◽  
Ali Haddad ◽  
Laleh Najafizadeh

AbstractObjectiveClassification of electroencephalography (EEG) signals with high accuracy using short recording intervals has been a challenging problem in developing brain computer interfaces (BCIs). This paper presents a novel feature extraction method for EEG recordings to tackle this problem.ApproachThe proposed approach is based on the concept that the brain functions in a dynamic manner, and utilizes dynamic functional connectivity graphs. The EEG data is first segmented into intervals during which functional networks sustain their connectivity. Functional connectivity networks for each identified segment are then localized, and graphs are constructed, which will be used as features. To take advantage of the dynamic nature of the generated graphs, a Long Short Term Memory (LSTM) classifier is employed for classification.Main resultsFeatures extracted from various durations of post-stimulus EEG data associated with motor execution and imagery tasks are used to test the performance of the classifier. Results show an average accuracy of 85.32% about only 500 ms after stimulus presentation.SignificanceOur results demonstrate, for the first time, that using the proposed feature extraction method, it is possible to classify motor tasks from EEG recordings using a short interval of the data in the order of hundreds of milliseconds (e.g. 500 ms).This duration is considerably shorter than what has been reported before. These results will have significant implications for improving the effectiveness and the speed of BCIs, particularly for those used in assistive technologies.


2021 ◽  
Vol 11 (5) ◽  
pp. 2372
Author(s):  
Carlos Alberto Stefano Filho ◽  
José Ignacio Serrano ◽  
Romis Attux ◽  
Gabriela Castellano ◽  
Eduardo Rocon ◽  
...  

Motor imagery (MI) has been suggested to provide additional benefits when included in traditional approaches of physical therapy for children with cerebral palsy (CP). Regardless, little is understood about the underlying neurological substrates that might justify its supposed benefits. In this work, we studied resting-state (RS) electroencephalography (EEG) recordings of five children with CP that underwent a MI virtual-reality (VR) intervention. Our aim was to explore functional connectivity (FC) patterns alterations following this intervention through the formalism of graph theory, performing both group and subject-specific analyses. We found that FC patterns were more consistent across subjects prior to the MI-VR intervention, shifting along the anterior-posterior axis, post-intervention, for the β and γ bands. Additionally, group FC patterns were not found for the α range. Furthermore, intra-subject analyses reinforced the existence of large inter-subject variability and the need for a careful exploration of individual pattern alterations. Such patterns also hinted at a dependency between short-term functional plasticity mechanisms and the EEG frequency bands. Although our sample size is small, we provide a longitudinal analysis framework that can be replicated in future studies, especially at the group level, and whose foundation can be easily extended to verify the validity of our hypotheses.


2021 ◽  
Vol 42 (7) ◽  
pp. 2278-2291
Author(s):  
Anna K. Bonkhoff ◽  
Markus D. Schirmer ◽  
Martin Bretzner ◽  
Mark Etherton ◽  
Kathleen Donahue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document