Convolutional Neural Network with Sparse Strategies to Classify Dynamic Functional Connectivity

Author(s):  
Junzhong Ji ◽  
Zhihui Chen ◽  
Cuicui Yang
Author(s):  
Sunghee Dong ◽  
Yan Jin ◽  
SuJin Bak ◽  
Bumchul Yoon ◽  
and Jichai Jeong

Functional connectivity (FC) is a potential candidate that can increase the performance of brain-computer interfaces (BCIs) in the elderly because of its compensatory role in neural circuits. However, it is difficult to decode FC by current machine learning techniques because of a lack of its physiological understanding. To investigate the suitability of FC in BCI for the elderly, we propose the decoding of lower- and higher-order FCs using a convolutional neural network (CNN) in six cognitive-motor tasks. The layer-wise relevance propagation (LRP) method describes how age-related changes in FCs impact BCI applications for the elderly compared to younger adults. Seventeen younger (24.5±2.7 years) and twelve older (72.5±3.2 years) adults were recruited to perform tasks related to hand-force control with or without mental calculation. CNN yielded a six-class classification accuracy of 75.3% in the elderly, exceeding the 70.7% accuracy for the younger adults. In the elderly, the proposed method increases the classification accuracy by 88.3% compared to the filter-bank common spatial pattern (FBCSP). LRP results revealed that both lower- and higher-order FCs were dominantly overactivated in the prefrontal lobe depending on task type. These findings suggest a promising application of multi-order FC with deep learning on BCI systems for the elderly.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3020
Author(s):  
Sunghee Dong ◽  
Yan Jin ◽  
SuJin Bak ◽  
Bumchul Yoon ◽  
Jichai Jeong

Functional connectivity (FC) is a potential candidate that can increase the performance of brain-computer interfaces (BCIs) in the elderly because of its compensatory role in neural circuits. However, it is difficult to decode FC by the current machine learning techniques because of a lack of physiological understanding. To investigate the suitability of FC in BCIs for the elderly, we propose the decoding of lower- and higher-order FC using a convolutional neural network (CNN) in six cognitive-motor tasks. The layer-wise relevance propagation (LRP) method describes how age-related changes in FCs impact BCI applications for the elderly compared to younger adults. A total of 17 young adults 24.5±2.7 years and 12 older 72.5±3.2 years adults were recruited to perform tasks related to hand-force control with or without mental calculation. The CNN yielded a six-class classification accuracy of 75.3% in the elderly, exceeding the 70.7% accuracy for the younger adults. In the elderly, the proposed method increased the classification accuracy by 88.3% compared to the filter-bank common spatial pattern. The LRP results revealed that both lower- and higher-order FCs were dominantly overactivated in the prefrontal lobe, depending on the task type. These findings suggest a promising application of multi-order FC with deep learning on BCI systems for the elderly.


Author(s):  
Atif Riaz ◽  
Muhammad Asad ◽  
S. M. Masudur Rahman Al-Arif ◽  
Eduardo Alonso ◽  
Danai Dima ◽  
...  

2019 ◽  
Vol 27 (3) ◽  
pp. 191-205
Author(s):  
Bahareh Behboodi ◽  
Sung-Ho Lim ◽  
Miguel Luna ◽  
Hyeon-Ae Jeon ◽  
Ji-Woong Choi

Functional connectivity derived from resting-state functional near infrared spectroscopy has gained attention of recent scholars because of its capability in providing valuable insight into intrinsic networks and various neurological disorders in a human brain. Several progressive methodologies in detecting resting-state functional connectivity patterns in functional near infrared spectroscopy, such as seed-based correlation analysis and independent component analysis as the most widely used methods, were adopted in previous studies. Although these two methods provide complementary information each other, the conventional seed-based method shows degraded performance compared to the independent component analysis-based scheme in terms of the sensitivity and specificity. In this study, artificial neural network and convolutional neural network were utilized in order to overcome the performance degradation of the conventional seed-based method. First of all, the results of artificial neural network- and convolutional neural network-based method illustrated the superior performance in terms of specificity and sensitivity compared to both conventional approaches. Second, artificial neural network, convolutional neural network, and independent component analysis methods showed more robustness compared to seed-based method. Moreover, resting-state functional connectivity patterns derived from artificial neural network- and convolutional neural network-based methods in sensorimotor and motor areas were consistent with the previous findings. The main contribution of the present work is to emphasize that artificial neural network as well as convolutional neural network can be exploited for a high-performance seed-based method to estimate the temporal relation among brain networks during resting state.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document