Deep Learning-Based Segmentation and Uncertainty Assessment for Automated Analysis of Myocardial Perfusion MRI Datasets Using Patch-Level Training and Advanced Data Augmentation

Author(s):  
Dilek Mirgun Yalcinkaya ◽  
Khalid Youssef ◽  
Bobby Heydari ◽  
Luis Zamudio ◽  
Rohan Dharmakumar ◽  
...  
2020 ◽  
Vol 2 (6) ◽  
pp. e200009
Author(s):  
Hui Xue ◽  
Rhodri H. Davies ◽  
Louise A. E. Brown ◽  
Kristopher D. Knott ◽  
Tushar Kotecha ◽  
...  

2019 ◽  
Vol 51 (6) ◽  
pp. 1689-1696 ◽  
Author(s):  
Cian M. Scannell ◽  
Mitko Veta ◽  
Adriana D.M. Villa ◽  
Eva C. Sammut ◽  
Jack Lee ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Vittoria Vergani ◽  
Reza Razavi ◽  
Esther Puyol-Antón ◽  
Bram Ruijsink

Introduction: Deep learning demonstrates great promise for automated analysis of CMR. However, existing limitations, such as insufficient quality control and selection of target acquisitions from the full CMR exam, are holding back the introduction of deep learning tools in the clinical environment. This study aimed to develop a framework for automated detection and quality-controlled selection of standard cine sequences images from clinical CMR exams, prior to analysis of cardiac function.Materials and Methods: Retrospective study of 3,827 subjects that underwent CMR imaging. We used a total of 119,285 CMR acquisitions, acquired with scanners of different magnetic field strengths and from different vendors (1.5T Siemens and 1.5T and 3.0T Phillips). We developed a framework to select one good acquisition for each conventional cine class. The framework consisted of a first pre-processing step to exclude still acquisitions; two sequential convolutional neural networks (CNN), the first (CNNclass) to classify acquisitions in standard cine views (2/3/4-chamber and short axis), the second (CNNQC) to classify acquisitions according to image quality and orientation; a final algorithm to select one good acquisition of each class. For each CNN component, 7 state-of-the-art architectures were trained for 200 epochs, with cross entropy loss and data augmentation. Data were divided into 80% for training, 10% for validation, and 10% for testing.Results: CNNclass selected cine CMR acquisitions with accuracy ranging from 0.989 to 0.998. Accuracy of CNNQC reached 0.861 for 2-chamber, 0.806 for 3-chamber, and 0.859 for 4-chamber. The complete framework was presented with 379 new full CMR studies, not used for CNN training/validation/testing, and selected one good 2-, 3-, and 4-chamber acquisition from each study with sensitivity to detect erroneous cases of 89.7, 93.2, and 93.9%, respectively.Conclusions: We developed an accurate quality-controlled framework for automated selection of cine acquisitions prior to image analysis. This framework is robust and generalizable as it was developed on multivendor data and could be used at the beginning of a pipeline for automated cine CMR analysis to obtain full automatization from scanner to report.


Author(s):  
ASM Shihavuddin ◽  
Xiao Chen ◽  
Vladimir Fedorov ◽  
Nicolai Andre Brogaard Riis ◽  
Anders Nymark Christensen ◽  
...  

Timely detection of surface damages on wind turbine blades is imperative for minimising downtime and avoiding possible catastrophic structural failures. With recent advances in drone technology, a large number of high-resolution images of wind turbines are routinely acquired and subsequently analysed by experts to identify imminent damages. Automated analysis of these inspection images with the help of machine learning algorithms can reduce the inspection cost, thereby reducing the overall maintenance cost arising from the manual labour involved. In this work, we develop a deep learning based automated damage suggestion system for subsequent analysis of drone inspection images. Experimental results demonstrate that the proposed approach could achieve almost human level precision in terms of suggested damage location and types on wind turbine blades. We further demonstrate that for relatively small training sets advanced data augmentation during deep learning training can better generalise the trained model providing a significant gain in precision.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 676 ◽  
Author(s):  
ASM Shihavuddin ◽  
Xiao Chen ◽  
Vladimir Fedorov ◽  
Anders Nymark Christensen ◽  
Nicolai Andre Brogaard Riis ◽  
...  

Timely detection of surface damages on wind turbine blades is imperative for minimizing downtime and avoiding possible catastrophic structural failures. With recent advances in drone technology, a large number of high-resolution images of wind turbines are routinely acquired and subsequently analyzed by experts to identify imminent damages. Automated analysis of these inspection images with the help of machine learning algorithms can reduce the inspection cost. In this work, we develop a deep learning-based automated damage suggestion system for subsequent analysis of drone inspection images. Experimental results demonstrate that the proposed approach can achieve almost human-level precision in terms of suggested damage location and types on wind turbine blades. We further demonstrate that for relatively small training sets, advanced data augmentation during deep learning training can better generalize the trained model, providing a significant gain in precision.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yong He ◽  
Hong Zeng ◽  
Yangyang Fan ◽  
Shuaisheng Ji ◽  
Jianjian Wu

In this paper, we proposed an approach to detect oilseed rape pests based on deep learning, which improves the mean average precision (mAP) to 77.14%; the result increased by 9.7% with the original model. We adopt this model to mobile platform to let every farmer able to use this program, which will diagnose pests in real time and provide suggestions on pest controlling. We designed an oilseed rape pest imaging database with 12 typical oilseed rape pests and compared the performance of five models, SSD w/Inception is chosen as the optimal model. Moreover, for the purpose of the high mAP, we have used data augmentation (DA) and added a dropout layer. The experiments are performed on the Android application we developed, and the result shows that our approach surpasses the original model obviously and is helpful for integrated pest management. This application has improved environmental adaptability, response speed, and accuracy by contrast with the past works and has the advantage of low cost and simple operation, which are suitable for the pest monitoring mission of drones and Internet of Things (IoT).


Sign in / Sign up

Export Citation Format

Share Document