Seizure Type Classification Using EEG Based on Gramian Angular Field Transformation and Deep Learning

Author(s):  
Anand Shankar ◽  
Samarendra Dandapat ◽  
Shovan Barma
2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Emanuela Paladini ◽  
Edoardo Vantaggiato ◽  
Fares Bougourzi ◽  
Cosimo Distante ◽  
Abdenour Hadid ◽  
...  

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems. In this paper, we study different hand-crafted feature-based and deep learning methods using two popular multi-classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features, we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and the state-of-the-art methods in both databases.


2019 ◽  
Vol 1201 ◽  
pp. 012065 ◽  
Author(s):  
Inggi Ramadhani Dwi Saputro ◽  
Nita Dwi Maryati ◽  
Siti Rizqia Solihati ◽  
Inung Wijayanto ◽  
Sugondo Hadiyoso ◽  
...  

2021 ◽  
Vol 38 (3) ◽  
pp. 807-819
Author(s):  
Fatma Özcan ◽  
Ahmet Alkan

One of the goals of neural decoding in neuroscience is to create Brain-Computer Interfaces (BCI) that use nerve signals. In this context, we are interested in the activity of nerve cells. It is possible to classify nerve cells as excitatory or inhibitors by evaluating individual extra-cellular measurements taken from the frontal cortex of rats. Classification of neurons with only spike timing values has not been studied before, with deep learning, without knowing all of the wave properties and the intercellular interactions. In this study, inter-spike interval values of individual neuronal spike sequences were converted into recurrence plot images to analyze as point processing, image features were extracted using the pre-trained AlexNet with CNN deep learning method, and frontal cortex nerve cell type classification was made. Kernel classification, SVM, Naive Bayes, Ensemble, decision trees classification methods were used. The accuracy, sensitivity and specificity evaluate the proposed methods. A success of more than 81% has been achieved. Thus, the cell type is defined automatically. It has been observed that the ISI properties of spike trains can carry out information on cell type and thus neural network activity. Under these circumstances, these values are significant and important for neuroscientists.


Author(s):  
Hossein Mohammadian Foroushani ◽  
Pamela LaMontagne ◽  
Lauren Wallace ◽  
Jenny Gurney ◽  
Daniel Marcus

Sign in / Sign up

Export Citation Format

Share Document