Distribution of M-Wave and H-Reflex in Hand Muscles Evoked via Transcutaneous Nerve Stimulation: A Preliminary Report

Author(s):  
Luis Vargas ◽  
John Baratta ◽  
Xiaogang Hu
2006 ◽  
Vol 96 (3) ◽  
pp. 1293-1302 ◽  
Author(s):  
Piotr M. Klakowicz ◽  
Evan R. L. Baldwin ◽  
David F. Collins

Tetanic neuromuscular stimulation evokes contractions by depolarizing motor axons beneath the stimulating electrodes. However, we have shown that extra torque can develop due to the discharge of spinal neurons recruited by the evoked sensory volley. The present experiments investigated whether extra torque in the ankle plantar- and dorsiflexors was associated with enhanced H-reflexes. The tibial and common peroneal nerves were stimulated using 7-s trains (20 Hz for 2 s, 100 Hz for 2 s, 20 Hz for 3 s). Extra torque was defined as significantly more torque during 20-Hz stimulation after the 100-Hz burst (time2) than before it (time1). In 9 of 11 subjects, extra plantarflexion torque developed during stimulation just above motor threshold. In these nine subjects, torque increased from 8 to 13% MVC (time1to time2), the soleus H-reflex increased from 13 to 19% Mmaxand the M-wave of ∼2% Mmaxdid not change significantly. To evoke extra dorsiflexion torque, greater stimulation intensities were required. In 6 of 13 subjects, extra torque developed at intensities that evoked an M-wave of 5–20% Mmaxat time1.In these six subjects, torque doubled from 2 to 4% MVC (time1to time2), whereas tibialis anterior (TA) H-reflexes and M-waves did not change significantly (H-reflex from 0.8 to 2% Mmax; M-wave from 12 to 14% Mmax). In 7 of 13 subjects, extra torque developed at higher stimulation intensities (35–65% Mmax). In these seven subjects, torque increased from 13 to 20% MVC, whereas TA H-reflexes and M-waves were not significantly different (H-reflex from 0.7 to 1% Mmax; M-wave from 49 to 54% Mmax). Thus enhanced H-reflexes contributed to extra plantarflexion, however, other factors generated extra dorsiflexion.


Author(s):  
G.I. Boorman ◽  
J.A. Hoffer ◽  
K. Kallesoe ◽  
D. Viberg ◽  
C. Mah

AbstractBackground: When H-reflexes are recorded during movement in human subjects, the stimulator current output is not a good indicator of sensory stimulation efficacy because of unavoidable nerve movement relative to the stimulus electrodes. Therefore, the M-wave amplitude has been used by researchers as an indicator of the efficacy of the stimulus. In this study we have examined the general validity of the hypothesis that the M-wave amplitude is directly proportional to the group I sensory afferent volley evoked by the stimulus. Methods: A nerve recording cuff, stimulating electrodes, and EMG recording electrodes were implanted in cats. Nerve cuff recordings of centrally propagating volleys evoked by electrical stimuli were directly compared to M-waves produced by the same stimuli. Compound action potentials (CAPs) recorded in the sciatic nerve were compared with soleus M-waves during either tibial nerve or soleus muscle nerve stimulation. CAPs in the ulnar nerve were correlated with flexor carpi ulnaris M-waves during ulnar nerve stimulation. Results and Conclusions: Our findings indicate that for mixed nerve stimulation (e.g., tibial or ulnar nerve) the M-wave can be a reliable indicator of the centrally propagating sensory volley. Due to the high correlation between CAP and M-wave amplitude in these nerves, a small number of M-waves can give a good estimate of the size of the group I sensory volley. On the other hand, when nerves with only partially overlaping fibre diameter populations are stimulated (e.g., the soleus muscle nerve), the M-wave is not well correlated with the group I sensory volley and thus may not be used as a measure of the size of the input volley for H-reflex studies.


Author(s):  
Yung-Sheng Chen ◽  
Shi Zhou ◽  
Zachary J. Crowley-McHattan ◽  
Pedro Bezerra ◽  
Wei-Chin Tseng ◽  
...  

This study examined the acute effects of stretch tensions of kinesiology taping (KT) on the soleus (SOL), medial (MG), and lateral (LG) gastrocnemius Hoffmann-reflex (H-reflex) modulation in physically active healthy adults. A cross-over within-subject design was used in this study. Twelve physically active collegiate students voluntarily participated in the study (age = 21.3 ± 1.2 years; height = 175.6 ± 7.1 cm; body weight = 69.9 ± 7.1 kg). A standard Y-shape of KT technique was applied to the calf muscles. The KT was controlled in three tension intensities in a randomised order: paper-off, 50%, and 100% of maximal stretch tension of the tape. The peak-to-peak amplitude of maximal M-wave (Mmax) and H-reflex (Hmax) responses in the SOL, MG, and LG muscles were assessed before taping (pre-taping), taping, and after taping (post-taping) phases in the lying prone position. The results demonstrated significantly larger LG Hmax responses in the pre-taping condition than those in the post-taping condition during paper-off KT (p = 0.002). Moreover, the ΔHmax/Mmax of pre- and post-taping in the SOL muscle was significantly larger during 50%KT tension than that of paper-off (p = 0.046). In conclusion, the stretch tension of KT contributes minor influence on the spinal motoneuron excitability in the triceps surae during rest.


2021 ◽  
Vol 84 ◽  
pp. 105322
Author(s):  
Nicola A. Maffiuletti ◽  
Rosa Visscher ◽  
Alessandra De Col ◽  
Alessandro Sartorio
Keyword(s):  
H Reflex ◽  

Pain ◽  
1984 ◽  
Vol 19 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Fabio Facchinetti ◽  
Giorgio Sandrini ◽  
Felice Petraglia ◽  
Enrico Alfonsi ◽  
Giuseppe Nappi ◽  
...  

Cephalalgia ◽  
2017 ◽  
Vol 38 (7) ◽  
pp. 1245-1256 ◽  
Author(s):  
Eleonora Vecchio ◽  
Eleonora Gentile ◽  
Giovanni Franco ◽  
Katia Ricci ◽  
Marina de Tommaso

Background Transcutaneous external supraorbital nerve stimulation has emerged as a treatment option for primary headache disorders, though its action mechanism is still unclear. Study aim In this randomized, sham-controlled pilot study we aimed to test the effects of a single external transcutaneous nerve stimulation session on pain perception and cortical responses induced by painful laser stimuli delivered to the right forehead and the right hand in a cohort of migraine without aura patients and healthy controls. Methods Seventeen migraine without aura patients and 21 age- and sex-matched controls were selected and randomly assigned to a real or sham external transcutaneous nerve stimulation single stimulation session. The external transcutaneous nerve stimulation was delivered with a self-adhesive electrode placed on the forehead and generating a 60 Hz pulse at 16 mA intensity for 20 minutes. For sham stimulation, we used 2 mA intensity. Laser evoked responses were recorded from 21 scalp electrodes in basal condition (T0), during external transcutaneous nerve stimulation and sham stimulation (T1), and immediately after these (T2). The laser evoked responses were analyzed by LORETA software. Results The real external transcutaneous nerve stimulation reduced the trigeminal N2P2 amplitude in migraine and control groups significantly in respect to placebo. The real stimulation was associated with lower activity in the anterior cingulate cortex under trigeminal laser stimuli. The pattern of LEP-reduced habituation was reverted by real and sham transcutaneous stimulation in migraine patients. Conclusions The present results could suggest that the external transcutaneous nerve stimulation may interfere with the threshold and the extent of trigeminal system activation, with a mechanism of potential utility in the resolution and prevention of migraine attacks.


Sign in / Sign up

Export Citation Format

Share Document