Differences in soleus H-reflex to M-wave ratio between obese and non-obese individuals

2021 ◽  
Vol 84 ◽  
pp. 105322
Author(s):  
Nicola A. Maffiuletti ◽  
Rosa Visscher ◽  
Alessandra De Col ◽  
Alessandro Sartorio
Keyword(s):  
H Reflex ◽  
Author(s):  
Yung-Sheng Chen ◽  
Shi Zhou ◽  
Zachary J. Crowley-McHattan ◽  
Pedro Bezerra ◽  
Wei-Chin Tseng ◽  
...  

This study examined the acute effects of stretch tensions of kinesiology taping (KT) on the soleus (SOL), medial (MG), and lateral (LG) gastrocnemius Hoffmann-reflex (H-reflex) modulation in physically active healthy adults. A cross-over within-subject design was used in this study. Twelve physically active collegiate students voluntarily participated in the study (age = 21.3 ± 1.2 years; height = 175.6 ± 7.1 cm; body weight = 69.9 ± 7.1 kg). A standard Y-shape of KT technique was applied to the calf muscles. The KT was controlled in three tension intensities in a randomised order: paper-off, 50%, and 100% of maximal stretch tension of the tape. The peak-to-peak amplitude of maximal M-wave (Mmax) and H-reflex (Hmax) responses in the SOL, MG, and LG muscles were assessed before taping (pre-taping), taping, and after taping (post-taping) phases in the lying prone position. The results demonstrated significantly larger LG Hmax responses in the pre-taping condition than those in the post-taping condition during paper-off KT (p = 0.002). Moreover, the ΔHmax/Mmax of pre- and post-taping in the SOL muscle was significantly larger during 50%KT tension than that of paper-off (p = 0.046). In conclusion, the stretch tension of KT contributes minor influence on the spinal motoneuron excitability in the triceps surae during rest.


2015 ◽  
Vol 52 (6) ◽  
pp. 1066-1071 ◽  
Author(s):  
Steffen Vangsgaard ◽  
Ernst a. Hansen ◽  
Pascal Madeleine
Keyword(s):  
H Reflex ◽  

2005 ◽  
Vol 26 (12) ◽  
pp. 1055-1061 ◽  
Author(s):  
Eric D. McVey ◽  
Riann M. Palmieri ◽  
Carrie L. Docherty ◽  
Steven M. Zinder ◽  
Christopher D. Ingersoll

Background: Functional ankle instability or a subjective report of “giving way” at the ankle may be present in up to 40% of patients after a lateral ankle sprain. Damage to mechanoreceptors within the lateral ankle ligaments after injury is hypothesized to interrupt neurologic feedback mechanisms resulting in functional ankle instability. The altered input can lead to weakness of muscles surrounding a joint, or arthrogenic muscle inhibition. Arthrogenic muscle inhibition may be the underlying cause of functional ankle instability. Establishing the involvement of arthrogenic muscle inhibition in functional ankle instability is critical to understanding the underlying mechanisms or chronic ankle instability. The purpose of this investigation was to determine if arthrogenic muscle inhibition is present in the ankle joint musculature of patients exhibiting unilateral functional ankle instability. Methods: Twenty-nine subjects, 15 with unilateral functional ankle instability and 14 healthy control subjects, consented to participate. Bilateral soleus, peroneal, and tibialis anterior H-reflex and M-wave recruitment curves were obtained. Maximal H-reflex and maximal M-wave values were identified and the H:M ratios were calculated for data analysis. Separate 1 × 2 ANOVA were done for both the functional ankle instability and control groups to evaluate differences between limbs on the H:M ratios. Bonferroni multiple comparison procedures were used for post hoc comparisons ( p ≤ 0.05). Results: The soleus and peroneal H:M ratios for subjects with functional ankle instability were smaller in the injured limb when compared with the uninjured limb (p < 0.05). No limb difference was detected for the tibialis anterior H:M ratio in the functional ankle instability group ( p = 0.904). No side-to-side differences were detected for the H:M ratios in patients reporting no history of ankle injury ( p > 0.05). Conclusions: Depressed H:M ratios in the injured limb suggest that arthrogenic muscle inhibition is present in the ankle musculature of patients exhibiting functional ankle instability. Establishing and using therapeutic techniques to reverse arthrogenic muscle inhibition may reduce the incidence of functional ankle instability.


2019 ◽  
Vol 127 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Carla Silva-Batista ◽  
Jumes Leopoldino de Oliveira Lira ◽  
Fabian J. David ◽  
Daniel M. Corcos ◽  
Eugenia Casella Tavares Mattos ◽  
...  

This study had two objectives: 1) to compare the effects of 3 wk of resistance training (RT) and resistance training with instability (RTI) on evoked reflex responses at rest and during maximal voluntary isometric contraction (MVIC) of individuals with Parkinson’s disease (PD) and 2) to determine the effectiveness of RT and RTI in moving values of evoked reflex responses of individuals with PD toward values of age-matched healthy control subjects (HCs) ( z-score analysis). Ten individuals in the RT group and 10 in the RTI group performed resistance exercises twice a week for 3 wk, but only the RTI group included unstable devices. The HC group ( n = 10) were assessed at pretest only. Evoked reflex responses at rest (H reflex and M wave) and during MVIC [supramaximal M-wave amplitude (Msup) and supramaximal V-wave amplitude (Vsup)] of the plantar flexors were assessed before and after the experimental protocol. From pretraining to posttraining, only RTI increased ratio of maximal H-reflex amplitude to maximal M-wave amplitude at rest (Hmax/Mmax), Msup, Vsup/Msup, and peak torque of the plantar flexors ( P < 0.05). At posttraining, RTI was more effective than RT in increasing resting Hmax and Vsup and in moving these values to those observed in HCs ( P < 0.05). We conclude that short-term RTI is more effective than short-term RT in modulating H-reflex excitability and in increasing efferent neural drive, approaching average values of HCs. Thus short-term RTI may cause positive changes at the spinal and supraspinal levels in individuals with PD. NEW & NOTEWORTHY Maximal H-reflex amplitude (Hmax) at rest and efferent neural drive [i.e., supramaximal V-wave amplitude (Vsup)] to skeletal muscles during maximal contraction are impaired in individuals with Parkinson’s disease. Short-term resistance training with instability was more effective than short-term resistance training alone in increasing Hmax and Vsup of individuals with Parkinson’s disease, reaching the average values of healthy control subjects.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kuei-Lin Yeh ◽  
Po-Yu Fong ◽  
Ying-Zu Huang

The effects of electrical stimulation of median nerve with a continuous theta burst pattern (EcTBS) on the spinal H-reflex were studied. Different intensities and durations of EcTBS were given to the median nerve to 11 healthy individuals. The amplitude ratio of the H-reflex to maximum M wave (H/M ratio), corticospinal excitability and inhibition measured using motor evoked potentials (MEPs), short-interval intracortical inhibition and facilitation (SICI/ICF), spinal reciprocal inhibition (RI), and postactivation depression (PAD) were measured before and after EcTBS. In result, the H/M ratio was reduced followed by EcTBS at 90% H-reflex threshold, and the effect lasted longer after 1200 pulses than after 600 pulses of EcTBS. In contrast, EcTBS at 110% threshold facilitated the H/M ratio, while at 80% threshold it had no effect. Maximum M wave, MEPs, SICI/ICF, RI, and PAD all remained unchanged after EcTBS. In conclusion, EcTBS produced lasting effects purely on the H-reflex, probably, through effects on postsynaptic plasticity. The effect of EcTBS depends on the intensity and duration of stimulation. EcTBS is beneficial to research on mechanisms of human plasticity. Moreover, its ability to modulate spinal excitability is expected to have therapeutic benefits on neurological disorders involving spinal cord dysfunction.


2014 ◽  
Vol 92 (10) ◽  
pp. 821-825
Author(s):  
Alyssa R. Hindle ◽  
Jenny W.H. Lou ◽  
David F. Collins

The afferent volley generated by neuromuscular electrical stimulation (NMES) influences corticospinal (CS) excitability and frequent NMES sessions can strengthen CS pathways, resulting in long-term improvements in function. This afferent volley can be altered by manipulating NMES parameters. Presently, we manipulated one such parameter, pulse duration, during NMES over the common peroneal nerve and assessed the influence on H-reflexes and CS excitability. We hypothesized that compared with shorter pulse durations, longer pulses would (i) shift the H-reflex recruitment curve to the left, relative to the M-wave curve; and (ii) increase CS excitability more. Using 3 pulse durations (50, 200, 1000 μs), M-wave and H-reflex recruitment curves were collected and, in separate experiments, CS excitability was assessed by comparing motor evoked potentials elicited before and after 30 min of NMES. Despite finding a leftward shift in the H-reflex recruitment curve when using the 1000 μs pulse duration, consistent with a larger afferent volley for a given efferent volley, the increases in CS excitability were not influenced by pulse duration. Hence, although manipulating pulse duration can alter the relative recruitment of afferents and efferents in the common peroneal nerve, under the present experimental conditions it is ineffective for maximizing CS excitability for rehabilitation.


2004 ◽  
Vol 96 (1) ◽  
pp. 218-225 ◽  
Author(s):  
Maria M. Nordlund ◽  
Alf Thorstensson ◽  
Andrew G. Cresswell

This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.


2016 ◽  
Vol 121 (2) ◽  
pp. 415-423 ◽  
Author(s):  
Runar Unhjem ◽  
Mona Nygård ◽  
Lene T. van den Hoven ◽  
Simranjit K. Sidhu ◽  
Jan Hoff ◽  
...  

Recently, we documented age-related attenuation of efferent drive to contracting skeletal muscle. It remains elusive if this indication of reduced muscle strength is present with lifelong strength training. For this purpose, we examined evoked potentials in the calf muscles of 11 [71 ± 4 (SD) yr] strength-trained master athletes (MA) contrasted with 10 (71 ± 4 yr) sedentary (SO) and 11 (73 ± 6 yr) recreationally active (AO) old subjects, as well as 9 (22 ± 2 yr) young controls. As expected, MA had higher leg press maximal strength (MA, 185 ± 32 kg; AO, 128 ± 15 kg; SO, 106 ± 11 kg; young, 147 ± 22 kg, P < 0.01) and rate of force development (MA, 5,588 ± 2,488 N/s; AO, 2,156 ± 1,100 N/s; SO, 2,011 ± 825 N/s; young, 3,663 ± 1,140 N/s, P < 0.05) than the other groups. MA also exhibited higher musculus soleus normalized V waves during maximal voluntary contractions (MVC) [maximal V wave amplitude/maximal M wave during MVC (Vsup/Msup); 0.28 ± 0.15] than AO (0.13 ± 0.06, P < 0.01) and SO (0.11 ± 0.05, P < 0.01), yet lower than young (0.45 ± 0.12, P < 0.01). No differences were apparent between the old groups in H reflex recorded at rest or during MVC [maximal H reflex amplitude/maximal M wave during rest (Hmax/Mmax); maximal H reflex amplitude during MVC/maximal M wave during MVC (Hsup/Msup)], and all were lower ( P < 0.01) than young. MA (34.4 ± 2.1 ms) had shorter ( P < 0.05) H reflex latency compared with AO (36.4 ± 3.7 ms) and SO (37.3 ± 3.2 ms), but longer ( P < 0.01) than young (30.7 ± 2.0 ms). Using interpolated twitch analysis, MA (89 ± 7%) had plantar flexion voluntary activation similar to young (90 ± 6%), and this was higher ( P < 0.05), or tended to be higher ( P = 0.06–0.09), than SO (83 ± 10%) and AO (84 ± 5%). These observations suggest that lifelong strength training has a protective effect against age-related attenuation of efferent drive. In contrast, no beneficial effect seems to derive from habitual recreational activity, indicating that strength training may be particularly beneficial for counteracting age-related loss of neuromuscular function.


2017 ◽  
Vol 123 (4) ◽  
pp. 816-824 ◽  
Author(s):  
Sebastien Racinais ◽  
Mathew G. Wilson ◽  
Nadia Gaoua ◽  
Julien D. Périard

This study aimed to clarify the pathway mediating hyperthermia-induced alterations in neural drive transmission and determine if heat acclimation protects voluntary muscle activation and cognitive function in hyperthermic humans. Electrically evoked potentials (H reflex and M wave), executive function (special planning and working memory), and maximal voluntary isometric contractions (120 s) were assessed in 14 participants in control conditions [CON, 24°C, 40% relative humidity (RH)] and in a hyperthermic state (HYP, 44–50°C, 50% RH) on consecutive days in a counterbalanced order. Thereafter, participants were passively heat acclimated for 11 days (1 h per day, 48–50°C, 50% RH) before repeating the initial assessments. Heat acclimation decreased rectal temperature in CON (−0.2°C, P < 0.05), but participants were maintained at ~39°C in HYP. Heat acclimation increased the time required to reach 39°C (+9 min), along with sweat rate (+0.7 l/h), and serum extracellular expression of heat shock protein 72 (eHSP72; +20%) in HYP ( P < 0.05). M-wave and H-reflex amplitudes were lower in HYP than CON ( P < 0.05) and were not protected by heat acclimation. Nerve conduction velocity was faster in HYP than CON ( P < 0.05) without being influenced by heat acclimation. These results suggest that peripheral neural drive transmission in the hyperthermic state is primarily affected by axonal conduction velocity rather than synaptic failure. Executive function, voluntary activation, and the ability to sustain torque were impaired in HYP ( P < 0.05). However, despite no perceptual changes ( P > 0.05), heat acclimation restored executive function, while protecting the ability to sustain voluntary activation and torque production during a prolonged contraction in hyperthermia ( P < 0.05). Ultimately, heat acclimation induces beneficial central but not peripheral neural adaptations. NEW & NOTEWORTHY Heat acclimation restores planning accuracy and working memory in hyperthermic humans, together with the supraspinal capacity to sustain motor drive during a sustained maximal voluntary contraction. Electrically evoked potential data (M wave, H reflex) indicate that heat acclimation does not protect against hyperthermia-induced impairments in peripheral neural drive transmission. Heat acclimation induces beneficial central but not peripheral neural adaptations.


Sign in / Sign up

Export Citation Format

Share Document