Automatic extraction method of independent features based on elevation projection of point clouds and morphological characters of ground object

Author(s):  
Shen Gao ◽  
Qingwu Hu
Author(s):  
H. Liu ◽  
M. Hou ◽  
A. Li ◽  
L. Xie

<p><strong>Abstract.</strong> A demand-oriented Building Information Model (BIM) model built using high-fidelity point cloud data can better protect architectural heritage. The multi-level detail (mutli-LoD) parametric model emphasizes the different protection requirements of typical components and the automatic extraction of corresponding parameters of high-fidelity point clouds, which are two related key issues. Taking the typical Chinese wooden architectural heritage as an example, according to different requirements, the multi-LoD principle of typical components is proposed. On this basis, the automatic extraction method of the above parameters is developed, and the key parameters of the method are recommended. In order to solve the above problems, taking the three typical Dou-Gong used in Liao Dynasty and Song Dynasty, including Zhutou Puzuo, Bujian Puzuo and Zhuanjiao Puzuo, as an example, briefly introduced the standardization characteristics of the typical components of the "Yingzao Fashi". Subsequently, the corresponding multiple LoD principles are recommended according to different requirements. Based on this and high-fidelity point cloud data, an automatic extraction method for multi-LoD BIM model parameters for typical components of wooden architectural heritage is proposed.</p>


2021 ◽  
Vol 15 (3) ◽  
pp. 258-267
Author(s):  
Hiroki Matsumoto ◽  
◽  
Yuma Mori ◽  
Hiroshi Masuda

Mobile mapping systems can capture point clouds and digital images of roadside objects. Such data are useful for maintenance, asset management, and 3D map creation. In this paper, we discuss methods for extracting guardrails that separate roadways and walkways. Since there are various shape patterns for guardrails in Japan, flexible methods are required for extracting them. We propose a new extraction method based on point processing and a convolutional neural network (CNN). In our method, point clouds and images are segmented into small fragments, and their features are extracted using CNNs for images and point clouds. Then, features from images and point clouds are combined and investigated using whether they are guardrails or not. Based on our experiments, our method could extract guardrails from point clouds with a high success rate.


2019 ◽  
Vol 11 (13) ◽  
pp. 1510 ◽  
Author(s):  
Bujar Fetai ◽  
Krištof Oštir ◽  
Mojca Kosmatin Fras ◽  
Anka Lisec

In order to transcend the challenge of accelerating the establishment of cadastres and to efficiently maintain them once established, innovative, and automated cadastral mapping techniques are needed. The focus of the research is on the use of high-resolution optical sensors on unmanned aerial vehicle (UAV) platforms. More specifically, this study investigates the potential of UAV-based cadastral mapping, where the ENVI feature extraction (FX) module has been used for data processing. The paper describes the workflow, which encompasses image pre-processing, automatic extraction of visible boundaries on the UAV imagery, and data post-processing. It shows that this approach should be applied when the UAV orthoimage is resampled to a larger ground sample distance (GSD). In addition, the findings show that it is important to filter the extracted boundary maps to improve the results. The results of the accuracy assessment showed that almost 80% of the extracted visible boundaries were correct. Based on the automatic extraction method, the proposed workflow has the potential to accelerate and facilitate the creation of cadastral maps, especially for developing countries. In developed countries, the extracted visible boundaries might be used for the revision of existing cadastral maps. However, in both cases, the extracted visible boundaries must be validated by landowners and other beneficiaries.


Sign in / Sign up

Export Citation Format

Share Document