scholarly journals Automatic Extraction of Tunnel Lining Cross-Sections from Terrestrial Laser Scanning Point Clouds

Sensors ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1648 ◽  
Author(s):  
Yun-Jian Cheng ◽  
Wenge Qiu ◽  
Jin Lei
Author(s):  
D. Hoffmeister ◽  
S. Zellmann ◽  
K. Kindermann ◽  
A. Pastoors ◽  
U. Lang ◽  
...  

Terrestrial laser scanning was conducted to document and analyse sites of geoarchaeological interest in Jordan, Egypt and Spain. In those cases, the terrestrial laser scanner LMS-Z420i from Riegl was used in combination with an accurate RTK-GPS for georeferencing of the point clouds. Additionally, local surveying networks were integrated by established transformations and used for indirect registration purposes. All data were integrated in a workflow that involves different software and according results. The derived data were used for the documentation of the sites by accurate plans and cross-sections. Furthermore, the 3D data were analysed for geoarchaeological research problems, such as volumetric determinations, the ceiling thickness of a cave and lighting simulations based on path tracing. The method was reliable in harsh environmental conditions, but the weight of the instrument, the measuring time and the minimum measurement distance were a drawback. However, generally an accurate documentation of the sites was possible. Overall, the integration in a 3D GIS is easily possible by the accurate georeference of the derived data. In addition, local survey results are also implemented by the established transformations. Enhanced analyses based on the derived 3D data shows promising results.


2019 ◽  
Vol 11 (3) ◽  
pp. 297 ◽  
Author(s):  
Zhen Cao ◽  
Dong Chen ◽  
Yufeng Shi ◽  
Zhenxin Zhang ◽  
Fengxiang Jin ◽  
...  

This paper presents a novel framework to extract metro tunnel cross sections (profiles) from Terrestrial Laser Scanning point clouds. The entire framework consists of two steps: tunnel central axis extraction and cross section determination. In tunnel central extraction, we propose a slice-based method to obtain an initial central axis, which is further divided into linear and nonlinear circular segments by an enhanced Random Sample Consensus (RANSAC) tunnel axis segmentation algorithm. This algorithm transforms the problem of hybrid linear and nonlinear segment extraction into a sole segmentation of linear elements defined at the tangent space rather than raw data space, significantly simplifying the tunnel axis segmentation. The extracted axis segments are then provided as input to the step of the cross section determination which generates the coarse cross-sectional points by intersecting a series of straight lines that rotate orthogonally around the tunnel axis with their local fitted quadric surface, i.e., cylindrical surface. These generated profile points are further refined and densified via solving a constrained nonlinear least squares problem. Our experiments on Nanjing metro tunnel show that the cross sectional fitting error is only 1.69 mm. Compared with the designed radius of the metro tunnel, the RMSE (Root Mean Square Error) of extracted cross sections’ radii only keeps 1.60 mm. We also test our algorithm on another metro tunnel in Shanghai, and the results show that the RMSE of radii only keeps 4.60 mm which is superior to a state-of-the-art method of 6.00 mm. Apart from the accurate geometry, our approach can maintain the correct topology among cross sections, thereby guaranteeing the production of geometric tunnel model without crack defects. Moreover, we prove that our algorithm is insensitive to the missing data and point density.


2020 ◽  
Vol 40 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Cezary Specht ◽  
Pawel S. Dabrowski ◽  
Mariusz Specht

Abstract In 2011, a yacht marina was built in Sopot (the largest holiday resort in Poland), which initiated the formation of a local shallowing of the bottom related to the tombolo effect. The building of the marina led to disturbances in the transmission of bottom deposits along the coast, which resulted from waves and the shift of the beach coastline by approx. 50 m towards the sea. Its effects include progressive morphological changes in the shore and the sea bottom, which will lead to the formation of a peninsula between the shore and the marina in the future. This paper presents the results of a comparative analysis of the accuracy of 3D modelling of the tombolo phenomenon in the onshore part of the beach using both point clouds obtained by terrestrial laser scanning methods and photogrammetric methods based on unmanned aerial vehicle photographs. The methods subjected to assessment include both those for land modelling and for determining the coastline course and its changes. The analysis results prove the existence of sub-metre differences in the imaged relief and the coastline course, which were demonstrated using an analysis of land cross-sections. The possibilities and limitations of both methods are demonstrated as well.


Author(s):  
Y. Zhou ◽  
Z. Dong ◽  
P. Tong ◽  
B. Yang

Abstract. The quality of tunnel excavation is evaluated by comparing the excavated tunnel and the design model. Terrestrial laser scanning (TLS) provides surveyors with dense and accurate three-dimensional (3D) point clouds for excavation model reconstruction. However, sufficient attention has not been paid to incorporating design models for tunnel point cloud processing. In this paper, a technical framework that combines TLS point clouds and the design model for tunnel excavation evaluation is proposed. Firstly, the point clouds are sliced into cross-sections and the feature points are accordingly extracted. Then, considering the structure of the design model, feature point deficiencies are repaired by topological and parametric model interpolation. Finally, the excavation quality is evaluated in terms of the deviation of centerlines and 3D models. This method is validated in the case study. Experiments show that the deviation of centerline azimuth is acceptable but there remain considerable overbreak and underbreak, which respectively account for 20.6% and 11.2% of the design excavation volume.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


2021 ◽  
Vol 13 (14) ◽  
pp. 2773
Author(s):  
Georgios Arseniou ◽  
David W. MacFarlane ◽  
Dominik Seidel

Trees have a fractal-like branching architecture that determines their structural complexity. We used terrestrial laser scanning technology to study the role of foliage in the structural complexity of urban trees. Forty-five trees of three deciduous species, Gleditsia triacanthos, Quercus macrocarpa, Metasequoia glyptostroboides, were sampled on the Michigan State University campus. We studied their structural complexity by calculating the box-dimension (Db) metric from point clouds generated for the trees using terrestrial laser scanning, during the leaf-on and -off conditions. Furthermore, we artificially defoliated the leaf-on point clouds by applying an algorithm that separates the foliage from the woody material of the trees, and then recalculated the Db metric. The Db of the leaf-on tree point clouds was significantly greater than the Db of the leaf-off point clouds across all species. Additionally, the leaf removal algorithm introduced bias to the estimation of the leaf-removed Db of the G. triacanthos and M. glyptostroboides trees. The index capturing the contribution of leaves to the structural complexity of the study trees (the ratio of the Db of the leaf-on point clouds divided by the Db of the leaf-off point clouds minus one), was negatively correlated with branch surface area and different metrics of the length of paths through the branch network of the trees, indicating that the contribution of leaves decreases as branch network complexity increases. Underestimation of the Db of the G. triacanthos trees, after the artificial leaf removal, was related to maximum branch order. These results enhance our understanding of tree structural complexity by disentangling the contribution of leaves from that of the woody structures. The study also highlighted important methodological considerations for studying tree structure, with and without leaves, from laser-derived point clouds.


2019 ◽  
Vol 11 (18) ◽  
pp. 2154 ◽  
Author(s):  
Ján Šašak ◽  
Michal Gallay ◽  
Ján Kaňuk ◽  
Jaroslav Hofierka ◽  
Jozef Minár

Airborne and terrestrial laser scanning and close-range photogrammetry are frequently used for very high-resolution mapping of land surface. These techniques require a good strategy of mapping to provide full visibility of all areas otherwise the resulting data will contain areas with no data (data shadows). Especially, deglaciated rugged alpine terrain with abundant large boulders, vertical rock faces and polished roche-moutones surfaces complicated by poor accessibility for terrestrial mapping are still a challenge. In this paper, we present a novel methodological approach based on a combined use of terrestrial laser scanning (TLS) and close-range photogrammetry from an unmanned aerial vehicle (UAV) for generating a high-resolution point cloud and digital elevation model (DEM) of a complex alpine terrain. The approach is demonstrated using a small study area in the upper part of a deglaciated valley in the Tatry Mountains, Slovakia. The more accurate TLS point cloud was supplemented by the UAV point cloud in areas with insufficient TLS data coverage. The accuracy of the iterative closest point adjustment of the UAV and TLS point clouds was in the order of several centimeters but standard deviation of the mutual orientation of TLS scans was in the order of millimeters. The generated high-resolution DEM was compared to SRTM DEM, TanDEM-X and national DMR3 DEM products confirming an excellent applicability in a wide range of geomorphologic applications.


Sign in / Sign up

Export Citation Format

Share Document