Edge-to-cloud Virtualized Cyberinfrastructure for Near Real-time Water Quality Forecasting in Lakes and Reservoirs

Author(s):  
Vahid Daneshmand ◽  
Adrienne Breef-Pilz ◽  
Cayelan C. Carey ◽  
Yuqi Jin ◽  
Yun-Jung Ku ◽  
...  
Author(s):  
R. Quinn Thomas ◽  
Renato J. Figueiredo ◽  
Vahid Daneshmand ◽  
Bethany J. Bookout ◽  
Laura K. Puckett ◽  
...  

AbstractFreshwater ecosystems are experiencing greater variability due to human activities, necessitating new tools to anticipate future water quality. In response, we developed and deployed a real-time iterative water temperature forecasting system (FLARE – Forecasting Lake And Reservoir Ecosystems). FLARE is composed of: water quality and meteorology sensors that wirelessly stream data, a data assimilation algorithm that uses sensor observations to update predictions from a hydrodynamic model and calibrate model parameters, and an ensemble-based forecasting algorithm to generate forecasts that include uncertainty. Importantly, FLARE quantifies the contribution of different sources of uncertainty (driver data, initial conditions, model process, and parameters) to each daily forecast of water temperature at multiple depths. We applied FLARE to Falling Creek Reservoir (Vinton, Virginia, USA), a drinking water supply, during a 475-day period encompassing stratified and mixed thermal conditions. Aggregated across this period, root mean squared error (RMSE) of daily forecasted water temperatures was 1.13 C at the reservoir’s near-surface (1.0 m) for 7-day ahead forecasts and 1.62C for 16-day ahead forecasts. The RMSE of forecasted water temperatures at the near-sediments (8.0 m) was 0.87C for 7-day forecasts and 1.20C for 16-day forecasts. FLARE successfully predicted the onset of fall turnover 4-14 days in advance in two sequential years. Uncertainty partitioning identified meteorology driver data as the dominant source of uncertainty in forecasts for most depths and thermal conditions, except for the near-sediments in summer, when model process uncertainty dominated. Overall, FLARE provides an open-source system for lake and reservoir water quality forecasting to improve real-time management.Key PointsWe created a real-time iterative lake water temperature forecasting system that uses sensors, data assimilation, and hydrodynamic modelingOur water quality forecasting system quantifies uncertainty in each daily forecast and is open-source16-day future forecasted temperatures were within 1.4°C of observations over 16 months in a reservoir case study


2018 ◽  
Vol 69 (8) ◽  
pp. 2045-2049
Author(s):  
Catalina Gabriela Gheorghe ◽  
Andreea Bondarev ◽  
Ion Onutu

Monitoring of environmental factors allows the achievement of some important objectives regarding water quality, forecasting, warning and intervention. The aim of this paper is to investigate water quality parameters in some potential pollutant sources from northern, southern and east-southern areas of Romania. Surface water quality data for some selected chemical parameters were collected and analyzed at different points from March to May 2017.


1991 ◽  
Vol 24 (6) ◽  
pp. 171-177 ◽  
Author(s):  
Zeng Fantang ◽  
Xu Zhencheng ◽  
Chen Xiancheng

A real-time mathematical model for three-dimensional tidal flow and water quality is presented in this paper. A control-volume-based difference method and a “power interpolation distribution” advocated by Patankar (1984) have been employed, and a concept of “separating the top-layer water” has been developed to solve the movable boundary problem. The model is unconditionally stable and convergent. Practical application of the model is illustrated by an example for the Pearl River Estuary.


2017 ◽  
Vol 2017 (4) ◽  
pp. 5598-5617
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1547
Author(s):  
Jian Sha ◽  
Xue Li ◽  
Man Zhang ◽  
Zhong-Liang Wang

Accurate real-time water quality prediction is of great significance for local environmental managers to deal with upcoming events and emergencies to develop best management practices. In this study, the performances in real-time water quality forecasting based on different deep learning (DL) models with different input data pre-processing methods were compared. There were three popular DL models concerned, including the convolutional neural network (CNN), long short-term memory neural network (LSTM), and hybrid CNN–LSTM. Two types of input data were applied, including the original one-dimensional time series and the two-dimensional grey image based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) decomposition. Each type of input data was used in each DL model to forecast the real-time monitoring water quality parameters of dissolved oxygen (DO) and total nitrogen (TN). The results showed that (1) the performances of CNN–LSTM were superior to the standalone model CNN and LSTM; (2) the models used CEEMDAN-based input data performed much better than the models used the original input data, while the improvements for non-periodic parameter TN were much greater than that for periodic parameter DO; and (3) the model accuracies gradually decreased with the increase of prediction steps, while the original input data decayed faster than the CEEMDAN-based input data and the non-periodic parameter TN decayed faster than the periodic parameter DO. Overall, the input data preprocessed by the CEEMDAN method could effectively improve the forecasting performances of deep learning models, and this improvement was especially significant for non-periodic parameters of TN.


2021 ◽  
Vol 1751 ◽  
pp. 012067
Author(s):  
Junaidi ◽  
T M Putra ◽  
A Surtono ◽  
G A Puazi ◽  
S W Suciyati ◽  
...  

2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

Sign in / Sign up

Export Citation Format

Share Document