scholarly journals A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (I) Application of Discharge-Water Quality Forecasting Model

2005 ◽  
Vol 38 (7) ◽  
pp. 565-574
Author(s):  
In-Sung Yeon ◽  
Sang-Jin Ahn
Author(s):  
Vahid Daneshmand ◽  
Adrienne Breef-Pilz ◽  
Cayelan C. Carey ◽  
Yuqi Jin ◽  
Yun-Jung Ku ◽  
...  

2013 ◽  
Vol 779-780 ◽  
pp. 1408-1413
Author(s):  
Shu Yuan Li ◽  
Jian Hua Tao ◽  
Lei Yu

Drinking water sources play an important role in assurance of life safety, normal production and social stability. In this paper, a real-time remote water quality monitoring and early warning system has been developed. The paper concentrates on the system architecture and key techniques of the real-time water quality monitoring and early warning. The implementation of the system by advanced water quality sensor techniques, wireless transmission, databases and water quality modeling is retraced in detail. It can be applied to the real-time remote monitoring of water quality and decision support for water pollution incidents.


2021 ◽  
Vol 327 ◽  
pp. 02011
Author(s):  
Sandel Zaharia ◽  
Gabriel Iana ◽  
Cristian Monea ◽  
Mihnea Sandu

The goal of the paper starts from the need for real-time monitoring of both running water and its affluents and urban sewerage systems with a role in discharging wastewater. The idea is to assess water quality and to determine the sources of pollutants resulting from human activity. The data quality will be obtained by purchasing them with a high resolution, both spatial and temporal, using multi-parametric sensors on a hardware platform of its own multisensory acquisition. The acquired data is stored in CLOUD or local server for storage, analysis and interpretation. There will be a software application based on artificial intelligence technologies that serves to identify and classify different polluted areas, locate pollution sources, predict their extinction, degree of pollution and help make decisions based on real-time detection. A web application will provide all the data collected in the field and it can be accessed on a common online platform. This allows researchers or employees of relevant agencies as well as city sewer system operators to validate the quality of data purchased from sensors and end users to be sure of their correctness.


Development of river water quality forecasting model (RWQFM) created using the concept of artificial neural network (ANN) for the river Ganga, India still has not been done as far as best awareness of the authors. In this research work an effort have been made for developing such model first time for the stream Ganga in the stretch from Devprayag to Roorkee, Uttarakhand, India by choosing five testing stations along this waterway. The month to month exploratory dataset for the time arrangement of 2001 to 2015 including four water quality parameters was taken. Using one of the proficient machine learning approach called ANN an optimal model is developed by conducting several experiments in Weka data mining tool. In advance the water quality is forecasted for next 12 months and the forecasting accuracy is determined using various performance measures. The computation of 12-steps ahead WQ indicated that the water comes out to be suitable for drinking throughout the year 2016 only at three stations: Devprayag, Rishikesh and Roorkee. At Haridwar station, the water is also comes out to be of best quality but only in nine months. In last quarter of 2016, a little degradation at Haridwar station while a crucial deterioration was noticed at Jwalapur site. The results showed that the proposed WQ model is more efficient in terms of the forecasting accuracy. At Rishikesh station the developed forecasting model achieved a noteworthy accuracy of 100%. Thus, the proposed ANN forecasting model is verified as an effective model and concluded that in overall the WQ of the Ganga River in this stretch is fine in 2016. Also, ANN has proven its significance as an efficient tool in the forecasting domain. Such models will definitely be helpful for the water management bodies in order to control the river pollution and consequently help the society as well


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
B. R. de Graaf ◽  
F. Williamson ◽  
Marcel Klein Koerkamp ◽  
J. W. Verhoef ◽  
R. Wuestman ◽  
...  

For safe supply of drinking water, water quality needs to be monitored online in real time. The consequence of inadequate monitoring can result in substantial health risks, and economic and reputational damages. Therefore, Vitens N.V., the largest drinking water company of the Netherlands, set a goal to explore and invest in the development of intelligent water supply. In order to do this Vitens N.V. has set up a demonstration network for online water quality monitoring, the Vitens Innovation Playground (VIP). With the recent innovative developments in the field of online sensoring Vitens kicked off, in 2011, its first major online sensoring program by implementing a sensor grid based on EventLab systems from Optiqua Technologies Pte Ltd in the distribution network. EventLab utilizes bulk refractive index as a generic parameter for continuous real time monitoring of changes in water quality. Key characteristics of this innovative optical sensor technology, high sensitivity generic sensors at low cost, make it ideal for deployment as an early warning system. This paper describes different components of the system, the technological challenges that were overcome, and presents performance data and conclusions from deployment of Optiqua's EventLab systems in the VIP.


Author(s):  
R. Quinn Thomas ◽  
Renato J. Figueiredo ◽  
Vahid Daneshmand ◽  
Bethany J. Bookout ◽  
Laura K. Puckett ◽  
...  

AbstractFreshwater ecosystems are experiencing greater variability due to human activities, necessitating new tools to anticipate future water quality. In response, we developed and deployed a real-time iterative water temperature forecasting system (FLARE – Forecasting Lake And Reservoir Ecosystems). FLARE is composed of: water quality and meteorology sensors that wirelessly stream data, a data assimilation algorithm that uses sensor observations to update predictions from a hydrodynamic model and calibrate model parameters, and an ensemble-based forecasting algorithm to generate forecasts that include uncertainty. Importantly, FLARE quantifies the contribution of different sources of uncertainty (driver data, initial conditions, model process, and parameters) to each daily forecast of water temperature at multiple depths. We applied FLARE to Falling Creek Reservoir (Vinton, Virginia, USA), a drinking water supply, during a 475-day period encompassing stratified and mixed thermal conditions. Aggregated across this period, root mean squared error (RMSE) of daily forecasted water temperatures was 1.13 C at the reservoir’s near-surface (1.0 m) for 7-day ahead forecasts and 1.62C for 16-day ahead forecasts. The RMSE of forecasted water temperatures at the near-sediments (8.0 m) was 0.87C for 7-day forecasts and 1.20C for 16-day forecasts. FLARE successfully predicted the onset of fall turnover 4-14 days in advance in two sequential years. Uncertainty partitioning identified meteorology driver data as the dominant source of uncertainty in forecasts for most depths and thermal conditions, except for the near-sediments in summer, when model process uncertainty dominated. Overall, FLARE provides an open-source system for lake and reservoir water quality forecasting to improve real-time management.Key PointsWe created a real-time iterative lake water temperature forecasting system that uses sensors, data assimilation, and hydrodynamic modelingOur water quality forecasting system quantifies uncertainty in each daily forecast and is open-source16-day future forecasted temperatures were within 1.4°C of observations over 16 months in a reservoir case study


Sign in / Sign up

Export Citation Format

Share Document