Temperature influence on analog figures-of-merit of nanosheet nMOSFET devices for sub-7nm technology node

Author(s):  
V.C.P. Silva ◽  
W.F. Perina ◽  
J. A. Martino ◽  
E. Simoen ◽  
A. Veloso ◽  
...  
1994 ◽  
Vol 90 (2) ◽  
pp. 391-395 ◽  
Author(s):  
Wen-Shaw Chen ◽  
Ho-Yih Liu ◽  
Zin-Huang Liu ◽  
Leuan Yang ◽  
Wen-Huei Chen

Author(s):  
Fan Hai-fu ◽  
Hao Quan ◽  
M. M. Woolfson

AbstractConventional direct methods, which work so well for small structures, are less successful for macromolecules. Where it has been demonstrated that a solution might be found using direct methods it is then found that the usual figures of merit are unable to distinguish the few good sets of phases from the large number of sets generated. The reasons for the difficulties with very large structures are considered from a first-principles approach taking into account both the factors of having a large number of atoms and low resolution data. A proposal is made for trying to recognize good phase sets by taking a large structure as a sum of a number of smaller structures for each of which a conventional figure of merit can be applied.


2018 ◽  
Vol 20 (4) ◽  
pp. 62-64
Author(s):  
V.V. Goushchin ◽  
◽  
I.I. Makoveev ◽  
S.S. Kozak ◽  
V.S. Bragin ◽  
...  

2020 ◽  
Vol 84 (11) ◽  
pp. 1415-1418
Author(s):  
S. G. Tikhomirov ◽  
S. L. Podvalny ◽  
V. I. Ryazhskikh ◽  
A. A. Khvostov ◽  
A. V. Karmanov

Author(s):  
Zhigang Song ◽  
Jochonia Nxumalo ◽  
Manuel Villalobos ◽  
Sweta Pendyala

Abstract Pin leakage continues to be on the list of top yield detractors for microelectronics devices. It is simply manifested as elevated current with one pin or several pins during pin continuity test. Although many techniques are capable to globally localize the fault of pin leakage, root cause analysis and identification for it are still very challenging with today’s advanced failure analysis tools and techniques. It is because pin leakage can be caused by any type of defect, at any layer in the device and at any process step. This paper presents a case study to demonstrate how to combine multiple techniques to accurately identify the root cause of a pin leakage issue for a device manufactured using advanced technology node. The root cause was identified as under-etch issue during P+ implantation hard mask opening for ESD protection diode, causing P+ implantation missing, which was responsible for the nearly ohmic type pin leakage.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 509a-509
Author(s):  
C.E. Wieland ◽  
J.E. Barrett ◽  
D.G. Clark ◽  
G. J. Wilfret

Four poinsettia cultivars were grown in glass greenhouses in Gainesville, Fla., in the Fall 1997 to evaluate differences in floral initiation and subsequent development. Three means of regulating photoperiod were 1) natural days 2) long-day lighting to 6 Oct. and then natural days (lights out) 3) long-day lighting to 6 Oct., and then short-day conditions by black cloth for 15 h (black cloth). At 2-day intervals, sample meristems were collected and examined for initiation of reproductive development. Average minimum and maximum temperatures during the first two weeks of October were 22 and 29 °C, respectively, with an average temperature of 25.3 °C. The overall average temperature was 23.2 °C from planting to anthesis. Differences in anthesis dates among cultivars were primarily due to time to initiation vs. rate of development. Under natural days, `Lilo' initiated first on 8 Oct. and `Freedom', `Peterstar', and `Success', followed by 6, 8, and 18 days, respectively. Lights out resulted in `Lilo' initiating 17 Oct., followed by `Freedom', `Peterstar', and `Success' initiating 7, 12, and 15 days later, respectively. Differences between cultivars in time of initiation was reduced under black cloth, where `Lilo' initiated 14 Oct., followed by `Freedom' 2 days later, and `Peterstar' and `Success' 7 days afterward. Initiation was positively correlated to visible bud and anthesis. First color was positively correlated to initiation and visible bud, with the exception of `Lilo'. Growth room studies conducted using various high temperatures and photoperiods indicated similar trends.


Sign in / Sign up

Export Citation Format

Share Document