Teaching modern control theory to undergraduates using a state space model of a synchronous generator

Author(s):  
Mohammad Rasouli ◽  
Robert Weissbach ◽  
Deryck Yeung
2017 ◽  
Vol 7 (1.2) ◽  
pp. 47
Author(s):  
N K Rayaguru ◽  
N. Poornachandra Rao ◽  
K. Navin Sam ◽  
Sunil Kumar Thakur

In this paper, state space model of the complete Wind Energy Electric Conversion System (WEECS) comprising of wind turbine, Permanent Magnet Synchronous Generator (PMSG), uncontrolled rectifier, DC-DC boost converter, and SPWM inverter feeding a standalone load has been formulated. The derived state space model is then simulated using Matlab/Simulink to test the model. As the standalone three phase load connected to the inverter demands constant output voltage irrespective of intermittent wind pattern, a PI controller is used to control the duty ratio of DC-DC boost converter to maintain constant output voltage at the inverter end.


2011 ◽  
Vol 24 (7) ◽  
pp. 1227-1237 ◽  
Author(s):  
Pangao Kou ◽  
Jianzhong Zhou ◽  
Changqing Wang ◽  
Han Xiao ◽  
Huifeng Zhang ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 481
Author(s):  
Kai Wen ◽  
Jing Gong ◽  
Yan Wu

With the boost of natural gas consumption, an automatic gas pipeline scheduling method is required to replace the dispatchers in decision making. Since the state space model is the fundamental work of modern control theory, it is possible that the classical controller synthesis method can be used for the complicated gas pipeline controller design. In this paper, a cascade control algorithm is proposed based on the state space model that is used for the transient flow simulation of the natural gas pipelines. A linear quadratic regulator is designed following the classical optimal control theory. Finally, the transient process with different control methods shows the effectiveness of the cascade control using information of the entire pipeline. According to the hardware configuration of natural gas pipelines, automatic scheduling process is ready to deploy as one step to the intelligent natural gas pipelines.


Author(s):  
Mahyar Akbari ◽  
Abdol Majid Khoshnood ◽  
Saied Irani

In this article, a novel approach for model-based sensor fault detection and estimation of gas turbine is presented. The proposed method includes driving a state-space model of gas turbine, designing a novel L1-norm Lyapunov-based observer, and a decision logic which is based on bank of observers. The novel observer is designed using multiple Lyapunov functions based on L1-norm, reducing the estimation noise while increasing the accuracy. The L1-norm observer is similar to sliding mode observer in switching time. The proposed observer also acts as a low-pass filter, subsequently reducing estimation chattering. Since a bank of observers is required in model-based sensor fault detection, a bank of L1-norm observers is designed in this article. Corresponding to the use of the bank of observers, a two-step fault detection decision logic is developed. Furthermore, the proposed state-space model is a hybrid data-driven model which is divided into two models for steady-state and transient conditions, according to the nature of the gas turbine. The model is developed by applying a subspace algorithm to the real field data of SGT-600 (an industrial gas turbine). The proposed model was validated by applying to two other similar gas turbines with different ambient and operational conditions. The results of the proposed approach implementation demonstrate precise gas turbine sensor fault detection and estimation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ji Chol ◽  
Ri Jun Il

Abstract The modeling of counter-current leaching plant (CCLP) in Koryo Extract Production is presented in this paper. Koryo medicine is a natural physic to be used for a diet and the medical care. The counter-current leaching method is mainly used for producing Koryo medicine. The purpose of the modeling in the previous works is to indicate the concentration distributions, and not to describe the model for the process control. In literature, there are no nearly the papers for modeling CCLP and especially not the presence of papers that have described the issue for extracting the effective components from the Koryo medicinal materials. First, this paper presents that CCLP can be shown like the equivalent process consisting of two tanks, where there is a shaking apparatus, respectively. It allows leachate to flow between two tanks. Then, this paper presents the principle model for CCLP and the state space model on based it. The accuracy of the model has been verified from experiments made at CCLP in the Koryo Extract Production at the Gang Gyi Koryo Manufacture Factory.


Sign in / Sign up

Export Citation Format

Share Document