An FPGA-based tree crown detection approach for remote sensing images

Author(s):  
Weijia Li ◽  
Conghui He ◽  
Haohuan Fu ◽  
Wayne Luk
2019 ◽  
Vol 11 (9) ◽  
pp. 1025 ◽  
Author(s):  
Weijia Li ◽  
Conghui He ◽  
Haohuan Fu ◽  
Juepeng Zheng ◽  
Runmin Dong ◽  
...  

The on-board real-time tree crown detection from high-resolution remote sensing images is beneficial for avoiding the delay between data acquisition and processing, reducing the quantity of data transmission from the satellite to the ground, monitoring the growing condition of individual trees, and discovering the damage of trees as early as possible, etc. Existing high performance platform based tree crown detection studies either focus on processing images in a small size or suffer from high power consumption or slow processing speed. In this paper, we propose the first FPGA-based real-time tree crown detection approach for large-scale satellite images. A pipelined-friendly and resource-economic tree crown detection algorithm (PF-TCD) is designed through reconstructing and modifying the workflow of the original algorithm into three computational kernels on FPGAs. Compared with the well-optimized software implementation of the original algorithm on an Intel 12-core CPU, our proposed PF-TCD obtains the speedup of 18.75 times for a satellite image with a size of 12,188 × 12,576 pixels without reducing the detection accuracy. The image processing time for the large-scale remote sensing image is only 0.33 s, which satisfies the requirements of the on-board real-time data processing on satellites.


2019 ◽  
Vol 11 (11) ◽  
pp. 1309 ◽  
Author(s):  
Ben G. Weinstein ◽  
Sergio Marconi ◽  
Stephanie Bohlman ◽  
Alina Zare ◽  
Ethan White

Remote sensing can transform the speed, scale, and cost of biodiversity and forestry surveys. Data acquisition currently outpaces the ability to identify individual organisms in high resolution imagery. We outline an approach for identifying tree-crowns in RGB imagery while using a semi-supervised deep learning detection network. Individual crown delineation has been a long-standing challenge in remote sensing and available algorithms produce mixed results. We show that deep learning models can leverage existing Light Detection and Ranging (LIDAR)-based unsupervised delineation to generate trees that are used for training an initial RGB crown detection model. Despite limitations in the original unsupervised detection approach, this noisy training data may contain information from which the neural network can learn initial tree features. We then refine the initial model using a small number of higher-quality hand-annotated RGB images. We validate our proposed approach while using an open-canopy site in the National Ecological Observation Network. Our results show that a model using 434,551 self-generated trees with the addition of 2848 hand-annotated trees yields accurate predictions in natural landscapes. Using an intersection-over-union threshold of 0.5, the full model had an average tree crown recall of 0.69, with a precision of 0.61 for the visually-annotated data. The model had an average tree detection rate of 0.82 for the field collected stems. The addition of a small number of hand-annotated trees improved the performance over the initial self-supervised model. This semi-supervised deep learning approach demonstrates that remote sensing can overcome a lack of labeled training data by generating noisy data for initial training using unsupervised methods and retraining the resulting models with high quality labeled data.


2019 ◽  
Vol 40 (13) ◽  
pp. 4910-4933 ◽  
Author(s):  
Ming Hao ◽  
Wenzhong Shi ◽  
Yuanxin Ye ◽  
Hua Zhang ◽  
Kazhong Deng

This chapter demonstrates an automatic detection approach for aeroplanes in optical satellite data. This chapter hypothesizes that aeroplane fuselage can be retrieved in satellite images. Aeroplane detection is a challenging task in remote sensing images due to its variable sizes, colours, complex backgrounds, and orientations. To this end, principle component analysis (PCA) and a deep belief network (DBN) are used to detect the MH370 flight. Needless to say that all detected targets are not segments of MH370.


2021 ◽  
Vol 13 (13) ◽  
pp. 2550
Author(s):  
Ke Wu ◽  
Tao Chen ◽  
Ying Xu ◽  
Dongwei Song ◽  
Haishan Li

Due to the high temporal repetition rates, median/low spatial resolution remote sensing images are the main data source of change detection (CD). It is worth noting that they contain a large number of mixed pixels, which makes adequately capturing the details in the resulting thematic map challenging. The spectral unmixing (SU) method is a potential solution to this problem, as it decomposes mixed pixels into a set of fractions of the land covers. However, there are accumulated errors in the fractional difference images, which lead to a poor change detection results. Meanwhile, the spectra variation of the endmember and the heterogeneity of the land cover materials cannot be fully considered in the traditional framework. In order to solve this problem, a novel change detection approach with image stacking and dividing based on spectral unmixing while considering the variability of endmembers (CD_SDSUVE) was proposed in this paper. Firstly, the remote sensing images at different times were stacked into a unified framework. After that, several patch images were produced by dividing the stacked images so that the similar endmembers according to each land cover can be completely extracted and compared. Finally, the multiple endmember spectral mixture analysis (MESMA) is performed, and the abundant images were combined to produce the entire change detection thematic map. This proposed algorithm was implemented and compared to four relevant state-of-the-art methods on three experimental data, whereby the results confirmed that it effectively improved the accuracy. In the simulated data, the overall accuracy (OA) and Kappa coefficient values were 99.61% and 0.99. In the two real data, the maximum of OA were acquired with 93.26% and 80.85%, which gained 14.88% and 13.42% over the worst results at most. Meanwhile, the Kappa coefficient value was consistent with the OA.


2021 ◽  
pp. 107890
Author(s):  
Xian Li ◽  
Xiaofei Yang ◽  
Xutao Li ◽  
Shijian Lu ◽  
Yunming Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document