T-S Fuzzy Modeling and Fuzzy Control of Overhead Crane Using LMI Technique

Author(s):  
Xuejuan Shao ◽  
Jinggang Zhang ◽  
Xueliang Zhang ◽  
Zhimei Chen
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xuejuan Shao ◽  
Jinggang Zhang ◽  
Xueliang Zhang

The dynamic model of overhead crane is highly nonlinear and uncertain. In this paper, Takagi-Sugeno (T-S) fuzzy modeling and PSO-based robust linear quadratic regulator (LQR) are proposed for anti-swing and positioning control of the system. First, on the basis of sector nonlinear theory, the two T-S fuzzy models are established by using the virtual control variables and approximate method. Then, considering the uncertainty of the model, robust LQR controllers with parallel distributed compensation (PDC) structure are designed. The feedback gain matrices are obtained by transforming the stability and robustness of the system into linear matrix inequalities (LMIs) problem. In addition, particle swarm optimization (PSO) algorithm is used to overcome the blindness of LQR weight matrix selection in the design process. The proposed control methods are simple, feasible, and robust. Finally, the numeral simulations are carried out to prove the effectiveness of the methods.


2011 ◽  
Vol 128-129 ◽  
pp. 1050-1053 ◽  
Author(s):  
Ding Ye ◽  
Wei Jin ◽  
De Cai Li

As for shortcomings of PID and modern control method in crane anti-swing system, we introduce the fuzzy theory to the crane anti-swing on base of analyzing the crane trolley’s moving dynamic model. The cooperation between the position fuzzy controller and swing fuzzy controller achieve the goal. We use the fuzzy control system of self-adjustable quantization factors and scale factors to solve the problem that have the oscillation in limit areas causing the load lasting swing during the trolley moving position control. According to the simulation, it can solve the problem and eliminate the steady-state error completely and improve enhance the adaptivity of system. It can make the trolley reach the designation in 15s and keep the load steady.


Sign in / Sign up

Export Citation Format

Share Document