Motion Capture System by Spatio-Temporal Integration of Multiple Kinects

Author(s):  
Takashi Morimoto ◽  
Ikuhisa Mitsugami
2012 ◽  
Vol 25 (0) ◽  
pp. 188
Author(s):  
Helena Sgouramani ◽  
Chris Muller ◽  
Leon van Noorden ◽  
Marc Leman ◽  
Argiro Vatakis

We report two experiments aiming to define how experience and stimulus enactment affect multisensory temporal integration for ecologically-valid stimuli. In both experiments, a number of different dance steps were used as audiovisual displays at a range of stimulus onset asynchronies using the method of constant stimuli. Participants were either professional dancers or non-dancers. In Experiment 1, using a simultaneity judgment (SJ) task, we aimed at defining — for the first time — the temporal window of integration (TWI) for dancers and non-dancers and the role of experience in SJ performance. Preliminary results showed that dancers had smaller TWI in comparison to non-dancers for all stimuli tested, with higher complexity (participant rated) dance steps requiring larger auditory leads for both participant groups. In Experiment 2, we adapted a more embodied point of view by examining how enactment of the stimulus modulates the TWIs. Participants were presented with simple audiovisual dance steps that could be synchronous or asynchronous and were asked to synchronize with the audiovisual display by actually performing the step indicated. A motion capture system recorded their performance at a millisecond level of accuracy. Based on the optimal integration hypothesis, we are currently looking at the data in terms of which modality will be dominant, considering that dance is a spatially (visual) and temporally (audio) coordinated action. Any corrective adjustments, accelerations–decelerations, hesitations will be interpreted as indicators of the perception of ambiguity in comparison to their performance at the synchronous condition, thus, for the first time, an implicit SJ response will be measured.


2013 ◽  
Vol 4 (3) ◽  
pp. 36-52 ◽  
Author(s):  
Sandro Mihradi ◽  
Ferryanto ◽  
Tatacipta Dirgantara ◽  
Andi I. Mahyuddin

This work presents the development of an affordable optical motion-capture system which uses home video cameras for 2D and 3D gait analysis. The 2D gait analyzer system consists of one camcorder and one PC while the 3D gait analyzer system uses two camcorders, a flash and two PCs. Both systems make use of 25 fps camcorder, LED markers and technical computing software to track motions of markers attached to human body during walking. In the experiment for 3D gait analyzer system, the two cameras are synchronized by using flash. The recorded videos for both systems are extracted into frames and then converted into binary images, and bridge morphological operation is applied for unconnected pixel to facilitate marker detection process. Least distance method is then employed to track the markers motions, and 3D Direct Linear Transformation is used to reconstruct 3D markers positions. The correlation between length in pixel and in the real world resulted from calibration process is used to reconstruct 2D markers positions. To evaluate the reliability of the 2D and 3D optical motion-capture system developed in the present work, spatio-temporal and kinematics parameters calculated from the obtained markers positions are qualitatively compared with the ones from literature, and the results show good compatibility.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6179
Author(s):  
Roua Walha ◽  
Karina Lebel ◽  
Nathaly Gaudreault ◽  
Pierre Dagenais ◽  
Andrea Cereatti ◽  
...  

The objectives of this study were to assess the accuracy and precision of a system combining an IMU-instrumented sock and a validated algorithm for the estimation of the spatio-temporal parameters of gait. A total of 25 healthy participants (HP) and 21 patients with foot impairments secondary to psoriatic arthritis (PsA) performed treadmill walking at three different speeds and overground walking at a comfortable speed. HP performed the assessment over two sessions. The proposed system’s estimations of cadence (CAD), gait cycle duration (GCD), gait speed (GS), and stride length (SL) obtained for treadmill walking were validated versus those estimated with a motion capture system. The system was also compared with a well-established multi-IMU-based system for treadmill and overground walking. The results showed a good agreement between the motion capture system and the IMU-instrumented sock in estimating the spatio-temporal parameters during the treadmill walking at normal and fast speeds for both HP and PsA participants. The accuracy of GS and SL obtained from the IMU-instrumented sock was better compared to the established multi-IMU-based system in both groups. The precision (inter-session reliability) of the gait parameter estimations obtained from the IMU-instrumented sock was good to excellent for overground walking and treadmill walking at fast speeds, but moderate-to-good for slow and normal treadmill walking. The proposed IMU-instrumented sock offers a novel form factor addressing the wearability issues of IMUs and could potentially be used to measure spatio-temporal parameters under clinical conditions and free-living conditions.


Author(s):  
Jonathan Kenneth Sinclair ◽  
Lindsay Bottoms

AbstractRecent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge.Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed.The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females.This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.


2006 ◽  
Vol 99 (8) ◽  
pp. 08B312 ◽  
Author(s):  
S. Hashi ◽  
M. Toyoda ◽  
M. Ohya ◽  
Y. Okazaki ◽  
S. Yabukami ◽  
...  

Author(s):  
Unai Zabala ◽  
Igor Rodriguez ◽  
José María Martínez-Otzeta ◽  
Elena Lazkano

AbstractNatural gestures are a desirable feature for a humanoid robot, as they are presumed to elicit a more comfortable interaction in people. With this aim in mind, we present in this paper a system to develop a natural talking gesture generation behavior. A Generative Adversarial Network (GAN) produces novel beat gestures from the data captured from recordings of human talking. The data is obtained without the need for any kind of wearable, as a motion capture system properly estimates the position of the limbs/joints involved in human expressive talking behavior. After testing in a Pepper robot, it is shown that the system is able to generate natural gestures during large talking periods without becoming repetitive. This approach is computationally more demanding than previous work, therefore a comparison is made in order to evaluate the improvements. This comparison is made by calculating some common measures about the end effectors’ trajectories (jerk and path lengths) and complemented by the Fréchet Gesture Distance (FGD) that aims to measure the fidelity of the generated gestures with respect to the provided ones. Results show that the described system is able to learn natural gestures just by observation and improves the one developed with a simpler motion capture system. The quantitative results are sustained by questionnaire based human evaluation.


Sign in / Sign up

Export Citation Format

Share Document