ferrite core
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 72)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 23 (1) ◽  
pp. 46-59
Author(s):  
Siti Hajar Yusoff ◽  
Amira Aziera Abdullah ◽  
Nadia Nazieha Nanda ◽  
Ahmed Samir Abed Badawi

The technology of dynamic Wireless Power Transfer (WPT) has been accepted in the Electric Vehicle (EV) industry. Recently, for a stationary EV charging system, the existence of a ferrite core improves power efficiency. However, for dynamic wireless charging, the output power fluctuates when the EV moves. Two main obstacles that must be dealt with is air-gaps and misalignment between the coils. This paper investigates clear design guidelines for fabrication of an efficient Resonant Inductive Power Transfer (RIPT) system for the EV battery charging application using a ferrite core. Two different geometry shapes of ferrite core, U and I cores, will be investigated and tested using simulation and experimental work. The proposed design was simulated in JMAG 14.0, and the prototype was tested in the laboratory. The expected output analysis from these two techniques was that the power efficiency of the ferrite pair should first be calculated. From the analysis and experimental results, it is seen that the pair of ferrite cores that used a U shape at the primary and secondary side provides the most efficient coupling in larger air-gap RIPT application with 94.69% on simulation JMAG 14.0 and 89.7% from conducting an experiment. ABSTRAK: Teknologi Alih Kuasa Wayarles (WPT) dinamik telah diterima pakai dalam Kenderaan Elektrik (EV). Baru-baru ini, kewujudan teras ferit dalam sistem pengecasan pegun EV dapat meningkatkan kecekapan kuasa. Namun, kuasa pengecasan ini akan berubah apabila EV bergerak bagi sistem pengecasan wayarles secara dinamik. Dua halangan utama yang harus ditangani adalah ketidakjajaran dan jarak antara dua gegelung. Kajian ini merupakan garis panduan yang jelas mengenai rekaan fabrikasi dan kecekapan sistem Alih Kuasa Induktif Resonan (RIPT) bagi aplikasi pengecasan bateri EV menggunakan teras ferit. Dua bentuk geometri teras ferit, iaitu teras U dan I telah dikaji dan diuji menggunakan simulasi dan eksperimen. Rekaan ini telah disimulasi menggunakan JMAG 14.0 dan prototaip diuji di dalam makmal. Kedua-dua teknik ini diharapkan dapat menghasilkan kecekapan kuasa yang sama. Dapatan kajian menunjukkan kedua-dua teras ferit pada sisi primer dan sekunder berbentuk U mempunyai gandingan paling efisien bagi jarak paling besar antara 2 gegelung menggunakan aplikasi RIPT dengan 94.69% simulasi JMAG 14.0 dan 89.7% secara eksperimen.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 326
Author(s):  
Darko Vasić ◽  
Ivan Rep ◽  
Dorijan Špikić ◽  
Matija Kekelj

Computationally fast electromagnetic models of eddy current sensors are required in model-based measurements, machine interpretation approaches or in the sensor design phase. If a sensor geometry allows it, the analytical approach to the modeling has significant advantages in comparison to numerical methods, most notably less demanding implementation and faster computation. In this paper, we studied an eddy current sensor consisting of a transmitter coil with a finitely long I ferrite core, which was screened with a finitely thick magnetic shield. The sensor was placed above a conductive and magnetic half-layer. We used vector magnetic potential formulation of the problem with a truncated region eigenfunction expansion, and obtained expressions for the transmitter coil impedance and magnetic potential in all subdomains. The modeling results are in excellent agreement with the results using the finite element method. The model was also compared with the impedance measurement in the frequency range from 5 kHz to 100 kHz and the agreement is within 3% for the resistance change due to the presence of the half-layer and 1% for the inductance change. The presented model can be used for measurement of properties of metallic objects, sensor lift-off or nonconductive coating thickness.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8540
Author(s):  
Jinwook Kim ◽  
Do-Hyeon Kim ◽  
Jieun Kim ◽  
Young-Jin Park

An efficient wireless power transfer (WPT) system is proposed using two self-resonant coils with a high-quality factor (Q-factor) over medium distance via an adaptive impedance matching network using ferrite core transformers. An equivalent circuit of the proposed WPT system is presented, and the system is analyzed based on circuit theory. The design and characterization methods for the transformer are also provided. Using the equivalent circuit, the appropriate relation between turn ratio and optimal impedance matching conditions for maximum power transfer efficiency is derived. The optimal impedance matching conditions for maximum power transfer efficiency according to distance are satisfied simply by changing the turn ratio of the transformers. The proposed WPT system maintains effective power transfer efficiency with little Q-factor degradation because of the ferrite core transformer. The proposed system is verified through experiments at 257 kHz. Two WPT systems with coupling efficiencies higher than 50% at 1 m are made. One uses transformers at both Tx and Rx; the other uses a transformer at Tx only while a low-loss coupling coil is applied at Rx. Using the system with transformers at both Tx and Rx, a wireless power transfer of 100 watts (100-watt light bulb) is achieved.


Author(s):  
Sebastián Guarín ◽  
Sergio Velarde ◽  
Edwin Castaño ◽  
Alexander Molina-Cabrera

This paper illustrates the design and building of a planar transformer prototype with a 1:1 transformation ratio for high-frequency applications in power electronics. By using reference literature and considering the ferrite core dimensions, the windings were conceived and exported to Gerber format using PCB design software. The transformer prototype was then assembled and tested under laboratory conditions for frequencies from 800 Hz to 5 MHz, which showed a sinusoidal wave at the transformer output from 1.3 kHz onwards and a better performance starting at 10 kHz, where the loses were significantly reduced and the transformation ratio was closer to the originally designed. As a final step, a finite element method (FEM) análisis was carried out to understand the electromagnetic flux behavior using a 3D Multiphysics simulation software. The 3d building process and details are explained step by step and the resulting magnetic flux density is graphically shown for the core and the windings.


2021 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Rudolf Ribeiro Riehl ◽  
Bruno Albuquerque de Castro ◽  
José Renato Castro Pompéia Fraga ◽  
Victor Puccia ◽  
Guilherme Beraldi Lucas ◽  
...  

Science and industry have sought to develop systems aiming to avoid total failures in power transformers since these machines can be working under overloads, moisture, mechanical and thermal stresses, among others. These non-conformities can promote the degradation of the insulation system and lead the transformer to total failure. In the incipient stages of these faults, it is common to detect Full Discharges (FDs), which are short circuits between degraded coils. Therefore, several techniques were developed to perform FD diagnosis using UHF, acoustics, and current sensors. In this scenario, this article presents a mathematical model for Rogowski coils and compares two different types of cores: Ferrite and Teflon. For this purpose, FDs were induced in an oil-filled transformer. The sensitivity and frequency response of the Rogowski coils were compared. This analysis was achieved using the Power Spectrum Density (PSD) and the energy of the acquired signals. Additionally, the Short-Time Fourier Transform (STFT) was applied to detect repetitive discharges. The results indicated that the Ferrite core increases the sensitivity by 50 times in the frequency band between 0 and 1 MHz. However, the Teflon core showed higher sensitivity between 5 and 10 MHz.


2021 ◽  
Vol 23 (1) ◽  
pp. 9
Author(s):  
Yohanes Edi Gunanto ◽  
Henni Sitompul ◽  
Maya Puspitasari Izaak ◽  
Wisnu Ari Adi

THE STRUCTURAL, IMPEDANCE AND DIELECTRIC A FERRITE CORE OF IRON MANGANITE AND ITS COMPOSITE. Samples with single-phase MnFeO3 and multiphase MnFeO3/ZnFe2O4 (30/70), and MnFeO3/ZnFe2O4/LaMnO3 (30/40/30) have been successfully prepared as ferrite cores by the solid-state reaction method using high energy milling. Crystal structure, surface morphology, impedance, AC-conductivity and dielectric quantities, such as dielectric constant and dielectric loss have been studied. The crystalline structures for MnFeO3, ZnFe2O4, and LaMnO3 are hexagonal, cubic and monoclinic, The Rietveld program used for XRD analysis resulted in the composition fractions of single phase MnFeO3, multiphase MnFeO3/ZnFe2O4 (31/69), and MnFeO3/ZnFe2O4/LaMnO3 (31/40/29). The morphology of all samples has a heterogeneous shape and size with low porosity. The single-phase impedance of MnFeO3 is higher than the multiphase sample. The conductivity of the three samples has the same pattern, which is relatively constant at low frequencies and begins to increase at frequencies above 10 kHz. The dielectric constant and dielectric loss (tan 𝜕) have high values at low frequencies, decrease exponentially with increasing frequency and are relatively fixed at high frequencies.


Author(s):  
Siquan Zhang

Purpose In eddy current nondestructive testing, a probe with a ferrite core such as an E-core coil is usually used to detect and locate defects such as cracks and corrosion in conductive material. However, the E-core coil has some disadvantages, such as large volume and difficulty in the process of winding the coils. This paper aims to present a novel T-core probe and its analytical model used for evaluating hidden holes in a multi- layer conductor. Design/methodology/approach By using a cylindrical coordinate system, the solution domain is truncated in the radial direction. The magnetic vector potential of each region excited by a filamentary coil is derived, and the expansion coefficients of the solutions are obtained by matching the boundary and interface conditions between the regions. By using the truncated region eigenfunction expansion method, the final expression in closed form for the impedance of the multi-turn coil is worked out, and the impedance calculation is performed in Mathematica. For frequencies ranging from 100 Hz to 100 kHz, both the impedance changes of the T-core coil above the multi-layer conductor without a hidden hole and in the absence of the layered conductor were calculated, and the influence of a hidden hole in the multi-layer conducting structure on the impedance change was investigated. Findings The correctness of the analytical model of the T-core coil was verified by the finite element method and experiments. The proposed T-core coil has higher sensitivity than an air-core coil, and similar sensitivity and smaller size than an E-core coil. Originality/value A new T-core coil probe and its accurate theoretical model for defect evaluation of conductor were presented; probe and analytical model can be used in probe design, detection process simulation or can be directly used in defect evaluation of multi-layer conductor.


JOM ◽  
2021 ◽  
Author(s):  
Bowen Dong ◽  
Haobo Wang ◽  
Gabriel Santillan ◽  
Andrew Sherman ◽  
Matthew A. Willard

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2167
Author(s):  
Eun S. Lee ◽  
Byeong Guk Choi

In order to design power converters and wireless power systems using high-frequency magnetic materials, the magnetic characteristics for the inductors and transformers should be specified in detail w.r.t. the operating frequency. For investigating the complex permeability of the magnetic materials by simply test prototypes, the inductor model-based calculation methodologies for the complex permeability are suggested to find the core loss characteristics in this paper. Based on the measured results of the test voltage Ve, current Ie, and phase difference θe, which can be obtained simply by an oscilloscope and a function generator, the real and imaginary permeability can be calculated w.r.t. operating frequency by the suggested calculation methodologies. Such information for the real and imaginary permeability is important to determine the size of the magnetic components and to analyze the core loss. To identify the superiority of the high-frequency magnetic materials, three prototypes for a ferrite core, amorphous core, and nanocrystalline core have been built and verified by experiment. As a result, the ferrite core is superior to the other cores for core loss, and the nanocrystalline core is recommended for compact transformer applications. The proposed calculation for the complex (i.e., real and imaginary) permeability, which has not been revealed in the datasheets, provides a way to easily determine the parameters useful for industrial electronics engineers.


Sign in / Sign up

Export Citation Format

Share Document