A WSN lifetime improvement algorithm reaping benefits of data aggregation and state transitions

Author(s):  
Kalyan Sasidhar ◽  
R Sreeresmi ◽  
P Rekha
2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


2005 ◽  
Vol 432 (1) ◽  
pp. 181-187 ◽  
Author(s):  
E. Meyer-Hofmeister ◽  
B. F. Liu ◽  
F. Meyer

2020 ◽  
Vol 105 (3) ◽  
pp. 323-376
Author(s):  
Li-E Yang ◽  
Lu Lu ◽  
Kevin S. Burgess ◽  
Hong Wang ◽  
De-Zhu Li

Lamiids, a clade composed of approximately 15% of all flowering plants, contains more than 50,000 species dispersed across 49 families and eight orders (APG IV, 2016). This paper is the eighth in a series that analyzes pollen characters across angiosperms. We reconstructed a maximum likelihood tree based on the most recent phylogenetic studies for the Lamiids, comprising 150 terminal genera (including six outgroups) and covering all eight orders and 49 families within the clade. To illustrate pollen diversity across the Lamiids, pollen grains from 22 species (22 genera in 14 families) were imaged under light, scanning, and transmission electron microscopy. Eighteen pollen characters that were documented from previous publications, websites, and our new observations were coded and optimized onto the reconstructed phylogenetic tree using Fitch parsimony, maximum likelihood, and hierarchical Bayesian analysis. Pollen morphology of the Lamiids is highly diverse, particularly in shape class, pollen size, aperture number, endoaperture shape, supratectal element shape, and tectum sculpture. In addition, some genera show relatively high infrageneric pollen variation within the Lamiids: i.e., Coffea L., Jacquemontia Choisy, Justicia L., Pedicularis L., Psychotria L. nom. cons., Sesamum L., Stachytarpheta Vahl, and Veronica L. The plesiomorphic states for 16 pollen characters were inferred unambiguously, and 10 of them displayed consistent plesiomorphic states under all optimization methods. Seventy-one lineages at or above the family level are characterized by pollen character state transitions. We identified diagnostic character states for monophyletic clades and explored palynological evidence to shed light on unresolved relationships. For example, palynological evidence supports the monophyly of Garryales and Metteniusaceae, and sister relationships between Icacinaceae and Oncothecaceae, as well as between Vahliales and Solanales. The evolutionary patterns of pollen morphology found in this study reconfirm several previously postulated evolutionary trends, which include an increase in aperture number, a transition from equatorially arranged apertures to globally distributed ones, and an increase in exine ornamentation complexity. Furthermore, there is a significant correlation between pollen characters and a number of ecological factors, e.g., pollen size and pollination type, pollen ornamentation and pollination type, and shape class and plant growth form. Our results provide insight into the ecological, environmental, and evolutionary mechanisms driving pollen character state changes in the Lamiids.


2006 ◽  
Author(s):  
Tian He ◽  
Lin Gu ◽  
Liqian Luo ◽  
Ting Yan ◽  
John A. Stankovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document